| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recvguniqlem | GIF version | ||
| Description: Lemma for recvguniq 11501. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.) |
| Ref | Expression |
|---|---|
| recvguniqlem.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| recvguniqlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| recvguniqlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| recvguniqlem.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| recvguniqlem.lt1 | ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) |
| recvguniqlem.lt2 | ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) |
| Ref | Expression |
|---|---|
| recvguniqlem | ⊢ (𝜑 → ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recvguniqlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | recvguniqlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
| 3 | recvguniqlem.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 4 | 2, 3 | ffvelcdmd 5770 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐾) ∈ ℝ) |
| 5 | recvguniqlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | 1, 5 | resubcld 8523 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
| 7 | 6 | rehalfcld 9354 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℝ) |
| 8 | 4, 7 | readdcld 8172 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
| 9 | recvguniqlem.lt1 | . . 3 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) | |
| 10 | 5, 7 | readdcld 8172 | . . . . 5 ⊢ (𝜑 → (𝐵 + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
| 11 | recvguniqlem.lt2 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) | |
| 12 | 4, 10, 7, 11 | ltadd1dd 8699 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2))) |
| 13 | 5 | recnd 8171 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 14 | 7 | recnd 8171 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℂ) |
| 15 | 13, 14, 14 | addassd 8165 | . . . . 5 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)))) |
| 16 | 6 | recnd 8171 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| 17 | 16 | 2halvesd 9353 | . . . . . 6 ⊢ (𝜑 → (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = (𝐴 − 𝐵)) |
| 18 | 17 | oveq2d 6016 | . . . . 5 ⊢ (𝜑 → (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) = (𝐵 + (𝐴 − 𝐵))) |
| 19 | 1 | recnd 8171 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 20 | 13, 19 | pncan3d 8456 | . . . . 5 ⊢ (𝜑 → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
| 21 | 15, 18, 20 | 3eqtrd 2266 | . . . 4 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = 𝐴) |
| 22 | 12, 21 | breqtrd 4108 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < 𝐴) |
| 23 | 1, 8, 1, 9, 22 | lttrd 8268 | . 2 ⊢ (𝜑 → 𝐴 < 𝐴) |
| 24 | 1 | ltnrd 8254 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
| 25 | 23, 24 | pm2.21fal 1415 | 1 ⊢ (𝜑 → ⊥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊥wfal 1400 ∈ wcel 2200 class class class wbr 4082 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ℝcr 7994 + caddc 7998 < clt 8177 − cmin 8313 / cdiv 8815 ℕcn 9106 2c2 9157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-2 9165 |
| This theorem is referenced by: recvguniq 11501 |
| Copyright terms: Public domain | W3C validator |