Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recvguniqlem | GIF version |
Description: Lemma for recvguniq 10959. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
recvguniqlem.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
recvguniqlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recvguniqlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
recvguniqlem.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
recvguniqlem.lt1 | ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) |
recvguniqlem.lt2 | ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) |
Ref | Expression |
---|---|
recvguniqlem | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recvguniqlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | recvguniqlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
3 | recvguniqlem.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
4 | 2, 3 | ffvelrnd 5632 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐾) ∈ ℝ) |
5 | recvguniqlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 1, 5 | resubcld 8300 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 9124 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℝ) |
8 | 4, 7 | readdcld 7949 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
9 | recvguniqlem.lt1 | . . 3 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) | |
10 | 5, 7 | readdcld 7949 | . . . . 5 ⊢ (𝜑 → (𝐵 + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
11 | recvguniqlem.lt2 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) | |
12 | 4, 10, 7, 11 | ltadd1dd 8475 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2))) |
13 | 5 | recnd 7948 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
14 | 7 | recnd 7948 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℂ) |
15 | 13, 14, 14 | addassd 7942 | . . . . 5 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)))) |
16 | 6 | recnd 7948 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
17 | 16 | 2halvesd 9123 | . . . . . 6 ⊢ (𝜑 → (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = (𝐴 − 𝐵)) |
18 | 17 | oveq2d 5869 | . . . . 5 ⊢ (𝜑 → (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) = (𝐵 + (𝐴 − 𝐵))) |
19 | 1 | recnd 7948 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
20 | 13, 19 | pncan3d 8233 | . . . . 5 ⊢ (𝜑 → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
21 | 15, 18, 20 | 3eqtrd 2207 | . . . 4 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = 𝐴) |
22 | 12, 21 | breqtrd 4015 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < 𝐴) |
23 | 1, 8, 1, 9, 22 | lttrd 8045 | . 2 ⊢ (𝜑 → 𝐴 < 𝐴) |
24 | 1 | ltnrd 8031 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
25 | 23, 24 | pm2.21fal 1368 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊥wfal 1353 ∈ wcel 2141 class class class wbr 3989 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ℝcr 7773 + caddc 7777 < clt 7954 − cmin 8090 / cdiv 8589 ℕcn 8878 2c2 8929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-2 8937 |
This theorem is referenced by: recvguniq 10959 |
Copyright terms: Public domain | W3C validator |