![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recvguniqlem | GIF version |
Description: Lemma for recvguniq 10607. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
recvguniqlem.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
recvguniqlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recvguniqlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
recvguniqlem.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
recvguniqlem.lt1 | ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) |
recvguniqlem.lt2 | ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) |
Ref | Expression |
---|---|
recvguniqlem | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recvguniqlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | recvguniqlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
3 | recvguniqlem.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
4 | 2, 3 | ffvelrnd 5488 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐾) ∈ ℝ) |
5 | recvguniqlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 1, 5 | resubcld 8010 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 8818 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℝ) |
8 | 4, 7 | readdcld 7667 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
9 | recvguniqlem.lt1 | . . 3 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) | |
10 | 5, 7 | readdcld 7667 | . . . . 5 ⊢ (𝜑 → (𝐵 + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
11 | recvguniqlem.lt2 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) | |
12 | 4, 10, 7, 11 | ltadd1dd 8184 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2))) |
13 | 5 | recnd 7666 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
14 | 7 | recnd 7666 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℂ) |
15 | 13, 14, 14 | addassd 7660 | . . . . 5 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)))) |
16 | 6 | recnd 7666 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
17 | 16 | 2halvesd 8817 | . . . . . 6 ⊢ (𝜑 → (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = (𝐴 − 𝐵)) |
18 | 17 | oveq2d 5722 | . . . . 5 ⊢ (𝜑 → (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) = (𝐵 + (𝐴 − 𝐵))) |
19 | 1 | recnd 7666 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
20 | 13, 19 | pncan3d 7947 | . . . . 5 ⊢ (𝜑 → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
21 | 15, 18, 20 | 3eqtrd 2136 | . . . 4 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = 𝐴) |
22 | 12, 21 | breqtrd 3899 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < 𝐴) |
23 | 1, 8, 1, 9, 22 | lttrd 7759 | . 2 ⊢ (𝜑 → 𝐴 < 𝐴) |
24 | 1 | ltnrd 7746 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
25 | 23, 24 | pm2.21fal 1319 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊥wfal 1304 ∈ wcel 1448 class class class wbr 3875 ⟶wf 5055 ‘cfv 5059 (class class class)co 5706 ℝcr 7499 + caddc 7503 < clt 7672 − cmin 7804 / cdiv 8293 ℕcn 8578 2c2 8629 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-2 8637 |
This theorem is referenced by: recvguniq 10607 |
Copyright terms: Public domain | W3C validator |