Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recvguniqlem | GIF version |
Description: Lemma for recvguniq 10877. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
recvguniqlem.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
recvguniqlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recvguniqlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
recvguniqlem.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
recvguniqlem.lt1 | ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) |
recvguniqlem.lt2 | ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) |
Ref | Expression |
---|---|
recvguniqlem | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recvguniqlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | recvguniqlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
3 | recvguniqlem.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
4 | 2, 3 | ffvelrnd 5600 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐾) ∈ ℝ) |
5 | recvguniqlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 1, 5 | resubcld 8239 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 9062 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℝ) |
8 | 4, 7 | readdcld 7890 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
9 | recvguniqlem.lt1 | . . 3 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) | |
10 | 5, 7 | readdcld 7890 | . . . . 5 ⊢ (𝜑 → (𝐵 + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
11 | recvguniqlem.lt2 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) | |
12 | 4, 10, 7, 11 | ltadd1dd 8414 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2))) |
13 | 5 | recnd 7889 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
14 | 7 | recnd 7889 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℂ) |
15 | 13, 14, 14 | addassd 7883 | . . . . 5 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)))) |
16 | 6 | recnd 7889 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
17 | 16 | 2halvesd 9061 | . . . . . 6 ⊢ (𝜑 → (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = (𝐴 − 𝐵)) |
18 | 17 | oveq2d 5834 | . . . . 5 ⊢ (𝜑 → (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) = (𝐵 + (𝐴 − 𝐵))) |
19 | 1 | recnd 7889 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
20 | 13, 19 | pncan3d 8172 | . . . . 5 ⊢ (𝜑 → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
21 | 15, 18, 20 | 3eqtrd 2194 | . . . 4 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = 𝐴) |
22 | 12, 21 | breqtrd 3990 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < 𝐴) |
23 | 1, 8, 1, 9, 22 | lttrd 7984 | . 2 ⊢ (𝜑 → 𝐴 < 𝐴) |
24 | 1 | ltnrd 7971 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
25 | 23, 24 | pm2.21fal 1355 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊥wfal 1340 ∈ wcel 2128 class class class wbr 3965 ⟶wf 5163 ‘cfv 5167 (class class class)co 5818 ℝcr 7714 + caddc 7718 < clt 7895 − cmin 8029 / cdiv 8528 ℕcn 8816 2c2 8867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-2 8875 |
This theorem is referenced by: recvguniq 10877 |
Copyright terms: Public domain | W3C validator |