ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniqlem GIF version

Theorem recvguniqlem 11247
Description: Lemma for recvguniq 11248. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
recvguniqlem.f (𝜑𝐹:ℕ⟶ℝ)
recvguniqlem.a (𝜑𝐴 ∈ ℝ)
recvguniqlem.b (𝜑𝐵 ∈ ℝ)
recvguniqlem.k (𝜑𝐾 ∈ ℕ)
recvguniqlem.lt1 (𝜑𝐴 < ((𝐹𝐾) + ((𝐴𝐵) / 2)))
recvguniqlem.lt2 (𝜑 → (𝐹𝐾) < (𝐵 + ((𝐴𝐵) / 2)))
Assertion
Ref Expression
recvguniqlem (𝜑 → ⊥)

Proof of Theorem recvguniqlem
StepHypRef Expression
1 recvguniqlem.a . . 3 (𝜑𝐴 ∈ ℝ)
2 recvguniqlem.f . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
3 recvguniqlem.k . . . . 5 (𝜑𝐾 ∈ ℕ)
42, 3ffvelcdmd 5715 . . . 4 (𝜑 → (𝐹𝐾) ∈ ℝ)
5 recvguniqlem.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
61, 5resubcld 8452 . . . . 5 (𝜑 → (𝐴𝐵) ∈ ℝ)
76rehalfcld 9283 . . . 4 (𝜑 → ((𝐴𝐵) / 2) ∈ ℝ)
84, 7readdcld 8101 . . 3 (𝜑 → ((𝐹𝐾) + ((𝐴𝐵) / 2)) ∈ ℝ)
9 recvguniqlem.lt1 . . 3 (𝜑𝐴 < ((𝐹𝐾) + ((𝐴𝐵) / 2)))
105, 7readdcld 8101 . . . . 5 (𝜑 → (𝐵 + ((𝐴𝐵) / 2)) ∈ ℝ)
11 recvguniqlem.lt2 . . . . 5 (𝜑 → (𝐹𝐾) < (𝐵 + ((𝐴𝐵) / 2)))
124, 10, 7, 11ltadd1dd 8628 . . . 4 (𝜑 → ((𝐹𝐾) + ((𝐴𝐵) / 2)) < ((𝐵 + ((𝐴𝐵) / 2)) + ((𝐴𝐵) / 2)))
135recnd 8100 . . . . . 6 (𝜑𝐵 ∈ ℂ)
147recnd 8100 . . . . . 6 (𝜑 → ((𝐴𝐵) / 2) ∈ ℂ)
1513, 14, 14addassd 8094 . . . . 5 (𝜑 → ((𝐵 + ((𝐴𝐵) / 2)) + ((𝐴𝐵) / 2)) = (𝐵 + (((𝐴𝐵) / 2) + ((𝐴𝐵) / 2))))
166recnd 8100 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℂ)
17162halvesd 9282 . . . . . 6 (𝜑 → (((𝐴𝐵) / 2) + ((𝐴𝐵) / 2)) = (𝐴𝐵))
1817oveq2d 5959 . . . . 5 (𝜑 → (𝐵 + (((𝐴𝐵) / 2) + ((𝐴𝐵) / 2))) = (𝐵 + (𝐴𝐵)))
191recnd 8100 . . . . . 6 (𝜑𝐴 ∈ ℂ)
2013, 19pncan3d 8385 . . . . 5 (𝜑 → (𝐵 + (𝐴𝐵)) = 𝐴)
2115, 18, 203eqtrd 2241 . . . 4 (𝜑 → ((𝐵 + ((𝐴𝐵) / 2)) + ((𝐴𝐵) / 2)) = 𝐴)
2212, 21breqtrd 4069 . . 3 (𝜑 → ((𝐹𝐾) + ((𝐴𝐵) / 2)) < 𝐴)
231, 8, 1, 9, 22lttrd 8197 . 2 (𝜑𝐴 < 𝐴)
241ltnrd 8183 . 2 (𝜑 → ¬ 𝐴 < 𝐴)
2523, 24pm2.21fal 1392 1 (𝜑 → ⊥)
Colors of variables: wff set class
Syntax hints:  wi 4  wfal 1377  wcel 2175   class class class wbr 4043  wf 5266  cfv 5270  (class class class)co 5943  cr 7923   + caddc 7927   < clt 8106  cmin 8242   / cdiv 8744  cn 9035  2c2 9086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-2 9094
This theorem is referenced by:  recvguniq  11248
  Copyright terms: Public domain W3C validator