![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recvguniqlem | GIF version |
Description: Lemma for recvguniq 11142. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.) |
Ref | Expression |
---|---|
recvguniqlem.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
recvguniqlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recvguniqlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
recvguniqlem.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
recvguniqlem.lt1 | ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) |
recvguniqlem.lt2 | ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) |
Ref | Expression |
---|---|
recvguniqlem | ⊢ (𝜑 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recvguniqlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | recvguniqlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
3 | recvguniqlem.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
4 | 2, 3 | ffvelcdmd 5695 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐾) ∈ ℝ) |
5 | recvguniqlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 1, 5 | resubcld 8402 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
7 | 6 | rehalfcld 9232 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℝ) |
8 | 4, 7 | readdcld 8051 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
9 | recvguniqlem.lt1 | . . 3 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) | |
10 | 5, 7 | readdcld 8051 | . . . . 5 ⊢ (𝜑 → (𝐵 + ((𝐴 − 𝐵) / 2)) ∈ ℝ) |
11 | recvguniqlem.lt2 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) | |
12 | 4, 10, 7, 11 | ltadd1dd 8577 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2))) |
13 | 5 | recnd 8050 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
14 | 7 | recnd 8050 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 𝐵) / 2) ∈ ℂ) |
15 | 13, 14, 14 | addassd 8044 | . . . . 5 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)))) |
16 | 6 | recnd 8050 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
17 | 16 | 2halvesd 9231 | . . . . . 6 ⊢ (𝜑 → (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = (𝐴 − 𝐵)) |
18 | 17 | oveq2d 5935 | . . . . 5 ⊢ (𝜑 → (𝐵 + (((𝐴 − 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) = (𝐵 + (𝐴 − 𝐵))) |
19 | 1 | recnd 8050 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
20 | 13, 19 | pncan3d 8335 | . . . . 5 ⊢ (𝜑 → (𝐵 + (𝐴 − 𝐵)) = 𝐴) |
21 | 15, 18, 20 | 3eqtrd 2230 | . . . 4 ⊢ (𝜑 → ((𝐵 + ((𝐴 − 𝐵) / 2)) + ((𝐴 − 𝐵) / 2)) = 𝐴) |
22 | 12, 21 | breqtrd 4056 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2)) < 𝐴) |
23 | 1, 8, 1, 9, 22 | lttrd 8147 | . 2 ⊢ (𝜑 → 𝐴 < 𝐴) |
24 | 1 | ltnrd 8133 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 𝐴) |
25 | 23, 24 | pm2.21fal 1384 | 1 ⊢ (𝜑 → ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊥wfal 1369 ∈ wcel 2164 class class class wbr 4030 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 + caddc 7877 < clt 8056 − cmin 8192 / cdiv 8693 ℕcn 8984 2c2 9035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-2 9043 |
This theorem is referenced by: recvguniq 11142 |
Copyright terms: Public domain | W3C validator |