ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqdiv GIF version

Theorem flqdiv 10215
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
flqdiv ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))

Proof of Theorem flqdiv
StepHypRef Expression
1 eqid 2157 . . . . . . . . 9 (⌊‘𝐴) = (⌊‘𝐴)
2 eqid 2157 . . . . . . . . 9 (𝐴 − (⌊‘𝐴)) = (𝐴 − (⌊‘𝐴))
31, 2intqfrac2 10213 . . . . . . . 8 (𝐴 ∈ ℚ → (0 ≤ (𝐴 − (⌊‘𝐴)) ∧ (𝐴 − (⌊‘𝐴)) < 1 ∧ 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))))
43simp3d 996 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
54adantr 274 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
65oveq1d 5836 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁))
7 simpl 108 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℚ)
87flqcld 10171 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℤ)
98zcnd 9282 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℂ)
10 zq 9530 . . . . . . . 8 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
118, 10syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℚ)
12 qsubcl 9542 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 − (⌊‘𝐴)) ∈ ℚ)
13 qcn 9538 . . . . . . . 8 ((𝐴 − (⌊‘𝐴)) ∈ ℚ → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
1412, 13syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
1511, 14syldan 280 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
16 simpr 109 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1716nncnd 8842 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1816nnap0d 8874 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
199, 15, 17, 18divdirapd 8697 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
206, 19eqtrd 2190 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
21 flqcl 10167 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
22 eqid 2157 . . . . . . . 8 (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘((⌊‘𝐴) / 𝑁))
23 eqid 2157 . . . . . . . 8 (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) = (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))
2422, 23intfracq 10214 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∧ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))))
2524simp3d 996 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2621, 25sylan 281 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2726oveq1d 5836 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
28 znq 9528 . . . . . . . 8 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℚ)
2928flqcld 10171 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
3021, 29sylan 281 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
3130zcnd 9282 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℂ)
328, 16, 28syl2anc 409 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℚ)
33 zq 9530 . . . . . . . 8 ((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℚ)
3430, 33syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℚ)
35 qsubcl 9542 . . . . . . 7 ((((⌊‘𝐴) / 𝑁) ∈ ℚ ∧ (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℚ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ)
3632, 34, 35syl2anc 409 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ)
37 qcn 9538 . . . . . 6 ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3836, 37syl 14 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3911, 12syldan 280 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℚ)
40 nnq 9537 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
4140adantl 275 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℚ)
4216nnne0d 8873 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
43 qdivcl 9547 . . . . . . 7 (((𝐴 − (⌊‘𝐴)) ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ)
4439, 41, 42, 43syl3anc 1220 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ)
45 qcn 9538 . . . . . 6 (((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
4644, 45syl 14 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
4731, 38, 46addassd 7895 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4820, 27, 473eqtrd 2194 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4948fveq2d 5471 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) = (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))))
50 qre 9529 . . . . 5 ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
5136, 50syl 14 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
52 qre 9529 . . . . . 6 ((𝐴 − (⌊‘𝐴)) ∈ ℚ → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
5339, 52syl 14 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
5453, 16nndivred 8878 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ)
5524simp1d 994 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
5621, 55sylan 281 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
5716nnrpd 9596 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ+)
58 qfracge0 10175 . . . . . 6 (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴)))
5958adantr 274 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐴 − (⌊‘𝐴)))
6053, 57, 59divge0d 9639 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
6151, 54, 56, 60addge0d 8392 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
62 nnre 8835 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
63 peano2rem 8137 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
6462, 63syl 14 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
65 nnap0 8857 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 # 0)
6664, 62, 65redivclapd 8702 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
6766adantl 275 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
6816nnrecred 8875 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (1 / 𝑁) ∈ ℝ)
6924simp2d 995 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
7021, 69sylan 281 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
71 qfraclt1 10174 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1)
7271adantr 274 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) < 1)
7316nnred 8841 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
7416nngt0d 8872 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
75 1re 7872 . . . . . . . 8 1 ∈ ℝ
76 ltdiv1 8734 . . . . . . . 8 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
7775, 76mp3an2 1307 . . . . . . 7 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
7853, 73, 74, 77syl12anc 1218 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
7972, 78mpbid 146 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))
8051, 54, 67, 68, 70, 79leltaddd 8436 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
81 nncn 8836 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
82 npcan1 8248 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
8381, 82syl 14 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
8483oveq1d 5836 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (𝑁 / 𝑁))
8564recnd 7901 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
86 ax-1cn 7820 . . . . . . . 8 1 ∈ ℂ
87 divdirap 8565 . . . . . . . 8 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 # 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
8886, 87mp3an2 1307 . . . . . . 7 (((𝑁 − 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 # 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
8985, 81, 65, 88syl12anc 1218 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
9081, 65dividapd 8654 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
9184, 89, 903eqtr3d 2198 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
9291adantl 275 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
9380, 92breqtrd 3990 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)
9432flqcld 10171 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
95 qaddcl 9539 . . . . 5 (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℚ)
9636, 44, 95syl2anc 409 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℚ)
97 flqbi2 10185 . . . 4 (((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℚ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
9894, 96, 97syl2anc 409 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
9961, 93, 98mpbir2and 929 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)))
10049, 99eqtr2d 2191 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  wne 2327   class class class wbr 3965  cfv 5169  (class class class)co 5821  cc 7725  cr 7726  0cc0 7727  1c1 7728   + caddc 7730   < clt 7907  cle 7908  cmin 8041   # cap 8451   / cdiv 8540  cn 8828  cz 9162  cq 9523  cfl 10162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-mulrcl 7826  ax-addcom 7827  ax-mulcom 7828  ax-addass 7829  ax-mulass 7830  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-1rid 7834  ax-0id 7835  ax-rnegex 7836  ax-precex 7837  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-apti 7842  ax-pre-ltadd 7843  ax-pre-mulgt0 7844  ax-pre-mulext 7845  ax-arch 7846
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-reap 8445  df-ap 8452  df-div 8541  df-inn 8829  df-n0 9086  df-z 9163  df-q 9524  df-rp 9556  df-fl 10164
This theorem is referenced by:  modqmulnn  10236
  Copyright terms: Public domain W3C validator