ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqdiv GIF version

Theorem flqdiv 10307
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
flqdiv ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))

Proof of Theorem flqdiv
StepHypRef Expression
1 eqid 2177 . . . . . . . . 9 (⌊‘𝐴) = (⌊‘𝐴)
2 eqid 2177 . . . . . . . . 9 (𝐴 − (⌊‘𝐴)) = (𝐴 − (⌊‘𝐴))
31, 2intqfrac2 10305 . . . . . . . 8 (𝐴 ∈ ℚ → (0 ≤ (𝐴 − (⌊‘𝐴)) ∧ (𝐴 − (⌊‘𝐴)) < 1 ∧ 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))))
43simp3d 1011 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
54adantr 276 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
65oveq1d 5884 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁))
7 simpl 109 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℚ)
87flqcld 10263 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℤ)
98zcnd 9365 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℂ)
10 zq 9615 . . . . . . . 8 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
118, 10syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℚ)
12 qsubcl 9627 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 − (⌊‘𝐴)) ∈ ℚ)
13 qcn 9623 . . . . . . . 8 ((𝐴 − (⌊‘𝐴)) ∈ ℚ → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
1412, 13syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
1511, 14syldan 282 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
16 simpr 110 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1716nncnd 8922 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1816nnap0d 8954 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
199, 15, 17, 18divdirapd 8775 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
206, 19eqtrd 2210 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
21 flqcl 10259 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
22 eqid 2177 . . . . . . . 8 (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘((⌊‘𝐴) / 𝑁))
23 eqid 2177 . . . . . . . 8 (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) = (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))
2422, 23intfracq 10306 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∧ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))))
2524simp3d 1011 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2621, 25sylan 283 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2726oveq1d 5884 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
28 znq 9613 . . . . . . . 8 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℚ)
2928flqcld 10263 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
3021, 29sylan 283 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
3130zcnd 9365 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℂ)
328, 16, 28syl2anc 411 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℚ)
33 zq 9615 . . . . . . . 8 ((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℚ)
3430, 33syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℚ)
35 qsubcl 9627 . . . . . . 7 ((((⌊‘𝐴) / 𝑁) ∈ ℚ ∧ (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℚ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ)
3632, 34, 35syl2anc 411 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ)
37 qcn 9623 . . . . . 6 ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3836, 37syl 14 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3911, 12syldan 282 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℚ)
40 nnq 9622 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
4140adantl 277 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℚ)
4216nnne0d 8953 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
43 qdivcl 9632 . . . . . . 7 (((𝐴 − (⌊‘𝐴)) ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ)
4439, 41, 42, 43syl3anc 1238 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ)
45 qcn 9623 . . . . . 6 (((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
4644, 45syl 14 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
4731, 38, 46addassd 7970 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4820, 27, 473eqtrd 2214 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4948fveq2d 5515 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) = (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))))
50 qre 9614 . . . . 5 ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
5136, 50syl 14 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
52 qre 9614 . . . . . 6 ((𝐴 − (⌊‘𝐴)) ∈ ℚ → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
5339, 52syl 14 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
5453, 16nndivred 8958 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ)
5524simp1d 1009 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
5621, 55sylan 283 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
5716nnrpd 9681 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ+)
58 qfracge0 10267 . . . . . 6 (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴)))
5958adantr 276 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐴 − (⌊‘𝐴)))
6053, 57, 59divge0d 9724 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
6151, 54, 56, 60addge0d 8469 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
62 nnre 8915 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
63 peano2rem 8214 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
6462, 63syl 14 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
65 nnap0 8937 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 # 0)
6664, 62, 65redivclapd 8781 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
6766adantl 277 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
6816nnrecred 8955 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (1 / 𝑁) ∈ ℝ)
6924simp2d 1010 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
7021, 69sylan 283 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
71 qfraclt1 10266 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1)
7271adantr 276 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) < 1)
7316nnred 8921 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
7416nngt0d 8952 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
75 1re 7947 . . . . . . . 8 1 ∈ ℝ
76 ltdiv1 8814 . . . . . . . 8 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
7775, 76mp3an2 1325 . . . . . . 7 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
7853, 73, 74, 77syl12anc 1236 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
7972, 78mpbid 147 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))
8051, 54, 67, 68, 70, 79leltaddd 8513 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
81 nncn 8916 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
82 npcan1 8325 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
8381, 82syl 14 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
8483oveq1d 5884 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (𝑁 / 𝑁))
8564recnd 7976 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
86 ax-1cn 7895 . . . . . . . 8 1 ∈ ℂ
87 divdirap 8643 . . . . . . . 8 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 # 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
8886, 87mp3an2 1325 . . . . . . 7 (((𝑁 − 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 # 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
8985, 81, 65, 88syl12anc 1236 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
9081, 65dividapd 8732 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
9184, 89, 903eqtr3d 2218 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
9291adantl 277 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
9380, 92breqtrd 4026 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)
9432flqcld 10263 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
95 qaddcl 9624 . . . . 5 (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℚ)
9636, 44, 95syl2anc 411 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℚ)
97 flqbi2 10277 . . . 4 (((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℚ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
9894, 96, 97syl2anc 411 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
9961, 93, 98mpbir2and 944 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)))
10049, 99eqtr2d 2211 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   < clt 7982  cle 7983  cmin 8118   # cap 8528   / cdiv 8618  cn 8908  cz 9242  cq 9608  cfl 10254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256
This theorem is referenced by:  modqmulnn  10328
  Copyright terms: Public domain W3C validator