ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqdiv GIF version

Theorem flqdiv 10551
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
flqdiv ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))

Proof of Theorem flqdiv
StepHypRef Expression
1 eqid 2229 . . . . . . . . 9 (⌊‘𝐴) = (⌊‘𝐴)
2 eqid 2229 . . . . . . . . 9 (𝐴 − (⌊‘𝐴)) = (𝐴 − (⌊‘𝐴))
31, 2intqfrac2 10549 . . . . . . . 8 (𝐴 ∈ ℚ → (0 ≤ (𝐴 − (⌊‘𝐴)) ∧ (𝐴 − (⌊‘𝐴)) < 1 ∧ 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))))
43simp3d 1035 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
54adantr 276 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
65oveq1d 6022 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁))
7 simpl 109 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℚ)
87flqcld 10505 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℤ)
98zcnd 9578 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℂ)
10 zq 9829 . . . . . . . 8 ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℚ)
118, 10syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℚ)
12 qsubcl 9841 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 − (⌊‘𝐴)) ∈ ℚ)
13 qcn 9837 . . . . . . . 8 ((𝐴 − (⌊‘𝐴)) ∈ ℚ → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
1412, 13syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ (⌊‘𝐴) ∈ ℚ) → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
1511, 14syldan 282 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
16 simpr 110 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1716nncnd 9132 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1816nnap0d 9164 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
199, 15, 17, 18divdirapd 8984 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
206, 19eqtrd 2262 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
21 flqcl 10501 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
22 eqid 2229 . . . . . . . 8 (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘((⌊‘𝐴) / 𝑁))
23 eqid 2229 . . . . . . . 8 (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) = (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))
2422, 23intfracq 10550 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∧ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))))
2524simp3d 1035 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2621, 25sylan 283 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2726oveq1d 6022 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
28 znq 9827 . . . . . . . 8 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℚ)
2928flqcld 10505 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
3021, 29sylan 283 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
3130zcnd 9578 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℂ)
328, 16, 28syl2anc 411 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℚ)
33 zq 9829 . . . . . . . 8 ((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℚ)
3430, 33syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℚ)
35 qsubcl 9841 . . . . . . 7 ((((⌊‘𝐴) / 𝑁) ∈ ℚ ∧ (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℚ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ)
3632, 34, 35syl2anc 411 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ)
37 qcn 9837 . . . . . 6 ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3836, 37syl 14 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3911, 12syldan 282 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℚ)
40 nnq 9836 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
4140adantl 277 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℚ)
4216nnne0d 9163 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
43 qdivcl 9846 . . . . . . 7 (((𝐴 − (⌊‘𝐴)) ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ)
4439, 41, 42, 43syl3anc 1271 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ)
45 qcn 9837 . . . . . 6 (((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
4644, 45syl 14 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
4731, 38, 46addassd 8177 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4820, 27, 473eqtrd 2266 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4948fveq2d 5633 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) = (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))))
50 qre 9828 . . . . 5 ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
5136, 50syl 14 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
52 qre 9828 . . . . . 6 ((𝐴 − (⌊‘𝐴)) ∈ ℚ → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
5339, 52syl 14 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
5453, 16nndivred 9168 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ)
5524simp1d 1033 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
5621, 55sylan 283 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
5716nnrpd 9898 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ+)
58 qfracge0 10509 . . . . . 6 (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴)))
5958adantr 276 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐴 − (⌊‘𝐴)))
6053, 57, 59divge0d 9941 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
6151, 54, 56, 60addge0d 8677 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
62 nnre 9125 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
63 peano2rem 8421 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
6462, 63syl 14 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
65 nnap0 9147 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 # 0)
6664, 62, 65redivclapd 8990 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
6766adantl 277 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) / 𝑁) ∈ ℝ)
6816nnrecred 9165 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (1 / 𝑁) ∈ ℝ)
6924simp2d 1034 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
7021, 69sylan 283 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
71 qfraclt1 10508 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1)
7271adantr 276 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) < 1)
7316nnred 9131 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
7416nngt0d 9162 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
75 1re 8153 . . . . . . . 8 1 ∈ ℝ
76 ltdiv1 9023 . . . . . . . 8 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
7775, 76mp3an2 1359 . . . . . . 7 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
7853, 73, 74, 77syl12anc 1269 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
7972, 78mpbid 147 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))
8051, 54, 67, 68, 70, 79leltaddd 8721 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
81 nncn 9126 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
82 npcan1 8532 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
8381, 82syl 14 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
8483oveq1d 6022 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (𝑁 / 𝑁))
8564recnd 8183 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
86 ax-1cn 8100 . . . . . . . 8 1 ∈ ℂ
87 divdirap 8852 . . . . . . . 8 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 # 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
8886, 87mp3an2 1359 . . . . . . 7 (((𝑁 − 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 # 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
8985, 81, 65, 88syl12anc 1269 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
9081, 65dividapd 8941 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
9184, 89, 903eqtr3d 2270 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
9291adantl 277 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
9380, 92breqtrd 4109 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)
9432flqcld 10505 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
95 qaddcl 9838 . . . . 5 (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℚ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℚ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℚ)
9636, 44, 95syl2anc 411 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℚ)
97 flqbi2 10519 . . . 4 (((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℚ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
9894, 96, 97syl2anc 411 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
9961, 93, 98mpbir2and 950 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)))
10049, 99eqtr2d 2263 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007  1c1 8008   + caddc 8010   < clt 8189  cle 8190  cmin 8325   # cap 8736   / cdiv 8827  cn 9118  cz 9454  cq 9822  cfl 10496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-n0 9378  df-z 9455  df-q 9823  df-rp 9858  df-fl 10498
This theorem is referenced by:  modqmulnn  10572  bitsp1  12470
  Copyright terms: Public domain W3C validator