![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addsubass | GIF version |
Description: Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addsubass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
2 | subcl 8158 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) | |
3 | 2 | 3adant1 1015 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) |
4 | simp3 999 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
5 | 1, 3, 4 | addassd 7982 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐵 − 𝐶)) + 𝐶) = (𝐴 + ((𝐵 − 𝐶) + 𝐶))) |
6 | npcan 8168 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) + 𝐶) = 𝐵) | |
7 | 6 | 3adant1 1015 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) + 𝐶) = 𝐵) |
8 | 7 | oveq2d 5893 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + ((𝐵 − 𝐶) + 𝐶)) = (𝐴 + 𝐵)) |
9 | 5, 8 | eqtrd 2210 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐵 − 𝐶)) + 𝐶) = (𝐴 + 𝐵)) |
10 | 9 | oveq1d 5892 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + (𝐵 − 𝐶)) + 𝐶) − 𝐶) = ((𝐴 + 𝐵) − 𝐶)) |
11 | 1, 3 | addcld 7979 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) ∈ ℂ) |
12 | pncan 8165 | . . 3 ⊢ (((𝐴 + (𝐵 − 𝐶)) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + (𝐵 − 𝐶)) + 𝐶) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) | |
13 | 11, 4, 12 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + (𝐵 − 𝐶)) + 𝐶) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
14 | 10, 13 | eqtr3d 2212 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 (class class class)co 5877 ℂcc 7811 + caddc 7816 − cmin 8130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sub 8132 |
This theorem is referenced by: addsub 8170 subadd23 8171 addsubeq4 8174 npncan 8180 subsub 8189 subsub3 8191 addsub4 8202 negsub 8207 addsubassi 8250 addsubassd 8290 zeo 9360 frecfzen2 10429 odd2np1 11880 |
Copyright terms: Public domain | W3C validator |