Step | Hyp | Ref
| Expression |
1 | | simpllr 529 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℤ) |
2 | | exbtwnzlemstep.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ℕ) |
3 | 2 | ad3antrrr 489 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℕ) |
4 | 3 | nnzd 9333 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℤ) |
5 | 1, 4 | zaddcld 9338 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℤ) |
6 | | simpr 109 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ≤ 𝐴) |
7 | | exbtwnzlemstep.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
8 | 7 | ad3antrrr 489 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 ∈ ℝ) |
9 | 5 | zred 9334 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℝ) |
10 | | 1red 7935 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℝ) |
11 | 9, 10 | readdcld 7949 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ∈ ℝ) |
12 | 3 | nnred 8891 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℝ) |
13 | 9, 12 | readdcld 7949 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 𝐾) ∈ ℝ) |
14 | | simplrr 531 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1))) |
15 | 1 | zcnd 9335 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℂ) |
16 | 3 | nncnd 8892 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℂ) |
17 | | 1cnd 7936 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℂ) |
18 | 15, 16, 17 | addassd 7942 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) = (𝑚 + (𝐾 + 1))) |
19 | 14, 18 | breqtrrd 4017 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 1)) |
20 | 3 | nnge1d 8921 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ≤ 𝐾) |
21 | 10, 12, 9, 20 | leadd2dd 8479 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ≤ ((𝑚 + 𝐾) + 𝐾)) |
22 | 8, 11, 13, 19, 21 | ltletrd 8342 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 𝐾)) |
23 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑗 = (𝑚 + 𝐾) → (𝑗 ≤ 𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴)) |
24 | | oveq1 5860 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑚 + 𝐾) → (𝑗 + 𝐾) = ((𝑚 + 𝐾) + 𝐾)) |
25 | 24 | breq2d 4001 |
. . . . . . . . 9
⊢ (𝑗 = (𝑚 + 𝐾) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 𝐾) + 𝐾))) |
26 | 23, 25 | anbi12d 470 |
. . . . . . . 8
⊢ (𝑗 = (𝑚 + 𝐾) → ((𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 𝐾) ≤ 𝐴 ∧ 𝐴 < ((𝑚 + 𝐾) + 𝐾)))) |
27 | 26 | rspcev 2834 |
. . . . . . 7
⊢ (((𝑚 + 𝐾) ∈ ℤ ∧ ((𝑚 + 𝐾) ≤ 𝐴 ∧ 𝐴 < ((𝑚 + 𝐾) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
28 | 5, 6, 22, 27 | syl12anc 1231 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
29 | | simpllr 529 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ) |
30 | | simplrl 530 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ≤ 𝐴) |
31 | | simpr 109 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾)) |
32 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝑗 ≤ 𝐴 ↔ 𝑚 ≤ 𝐴)) |
33 | | oveq1 5860 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾)) |
34 | 33 | breq2d 4001 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾))) |
35 | 32, 34 | anbi12d 470 |
. . . . . . . 8
⊢ (𝑗 = 𝑚 → ((𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)) ↔ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾)))) |
36 | 35 | rspcev 2834 |
. . . . . . 7
⊢ ((𝑚 ∈ ℤ ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
37 | 29, 30, 31, 36 | syl12anc 1231 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
38 | | breq1 3992 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 + 𝐾) → (𝑛 ≤ 𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴)) |
39 | | breq2 3993 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 + 𝐾) → (𝐴 < 𝑛 ↔ 𝐴 < (𝑚 + 𝐾))) |
40 | 38, 39 | orbi12d 788 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 𝐾) → ((𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛) ↔ ((𝑚 + 𝐾) ≤ 𝐴 ∨ 𝐴 < (𝑚 + 𝐾)))) |
41 | | exbtwnzlemstep.tri |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
42 | 41 | ralrimiva 2543 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
43 | 42 | ad2antrr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∀𝑛 ∈ ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
44 | | simplr 525 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ) |
45 | 2 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℕ) |
46 | 45 | nnzd 9333 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℤ) |
47 | 44, 46 | zaddcld 9338 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℤ) |
48 | 40, 43, 47 | rspcdva 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 𝐾) ≤ 𝐴 ∨ 𝐴 < (𝑚 + 𝐾))) |
49 | 28, 37, 48 | mpjaodan 793 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
50 | 49 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)))) |
51 | 50 | rexlimdva 2587 |
. . 3
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)))) |
52 | 51 | imp 123 |
. 2
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
53 | | breq1 3992 |
. . . 4
⊢ (𝑚 = 𝑗 → (𝑚 ≤ 𝐴 ↔ 𝑗 ≤ 𝐴)) |
54 | | oveq1 5860 |
. . . . 5
⊢ (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾)) |
55 | 54 | breq2d 4001 |
. . . 4
⊢ (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾))) |
56 | 53, 55 | anbi12d 470 |
. . 3
⊢ (𝑚 = 𝑗 → ((𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾)) ↔ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)))) |
57 | 56 | cbvrexv 2697 |
. 2
⊢
(∃𝑚 ∈
ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
58 | 52, 57 | sylibr 133 |
1
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾))) |