| Step | Hyp | Ref
| Expression |
| 1 | | simpllr 534 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℤ) |
| 2 | | exbtwnzlemstep.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 3 | 2 | ad3antrrr 492 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℕ) |
| 4 | 3 | nnzd 9464 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℤ) |
| 5 | 1, 4 | zaddcld 9469 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℤ) |
| 6 | | simpr 110 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ≤ 𝐴) |
| 7 | | exbtwnzlemstep.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 8 | 7 | ad3antrrr 492 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 9 | 5 | zred 9465 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℝ) |
| 10 | | 1red 8058 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℝ) |
| 11 | 9, 10 | readdcld 8073 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ∈ ℝ) |
| 12 | 3 | nnred 9020 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℝ) |
| 13 | 9, 12 | readdcld 8073 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 𝐾) ∈ ℝ) |
| 14 | | simplrr 536 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1))) |
| 15 | 1 | zcnd 9466 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℂ) |
| 16 | 3 | nncnd 9021 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℂ) |
| 17 | | 1cnd 8059 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℂ) |
| 18 | 15, 16, 17 | addassd 8066 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) = (𝑚 + (𝐾 + 1))) |
| 19 | 14, 18 | breqtrrd 4062 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 1)) |
| 20 | 3 | nnge1d 9050 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ≤ 𝐾) |
| 21 | 10, 12, 9, 20 | leadd2dd 8604 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ≤ ((𝑚 + 𝐾) + 𝐾)) |
| 22 | 8, 11, 13, 19, 21 | ltletrd 8467 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 𝐾)) |
| 23 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑗 = (𝑚 + 𝐾) → (𝑗 ≤ 𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴)) |
| 24 | | oveq1 5932 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑚 + 𝐾) → (𝑗 + 𝐾) = ((𝑚 + 𝐾) + 𝐾)) |
| 25 | 24 | breq2d 4046 |
. . . . . . . . 9
⊢ (𝑗 = (𝑚 + 𝐾) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 𝐾) + 𝐾))) |
| 26 | 23, 25 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑗 = (𝑚 + 𝐾) → ((𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 𝐾) ≤ 𝐴 ∧ 𝐴 < ((𝑚 + 𝐾) + 𝐾)))) |
| 27 | 26 | rspcev 2868 |
. . . . . . 7
⊢ (((𝑚 + 𝐾) ∈ ℤ ∧ ((𝑚 + 𝐾) ≤ 𝐴 ∧ 𝐴 < ((𝑚 + 𝐾) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
| 28 | 5, 6, 22, 27 | syl12anc 1247 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
| 29 | | simpllr 534 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ) |
| 30 | | simplrl 535 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ≤ 𝐴) |
| 31 | | simpr 110 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾)) |
| 32 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝑗 ≤ 𝐴 ↔ 𝑚 ≤ 𝐴)) |
| 33 | | oveq1 5932 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾)) |
| 34 | 33 | breq2d 4046 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾))) |
| 35 | 32, 34 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑗 = 𝑚 → ((𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)) ↔ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾)))) |
| 36 | 35 | rspcev 2868 |
. . . . . . 7
⊢ ((𝑚 ∈ ℤ ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
| 37 | 29, 30, 31, 36 | syl12anc 1247 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
| 38 | | breq1 4037 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 + 𝐾) → (𝑛 ≤ 𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴)) |
| 39 | | breq2 4038 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 + 𝐾) → (𝐴 < 𝑛 ↔ 𝐴 < (𝑚 + 𝐾))) |
| 40 | 38, 39 | orbi12d 794 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 𝐾) → ((𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛) ↔ ((𝑚 + 𝐾) ≤ 𝐴 ∨ 𝐴 < (𝑚 + 𝐾)))) |
| 41 | | exbtwnzlemstep.tri |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
| 42 | 41 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
| 43 | 42 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∀𝑛 ∈ ℤ (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
| 44 | | simplr 528 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ) |
| 45 | 2 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℕ) |
| 46 | 45 | nnzd 9464 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℤ) |
| 47 | 44, 46 | zaddcld 9469 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℤ) |
| 48 | 40, 43, 47 | rspcdva 2873 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 𝐾) ≤ 𝐴 ∨ 𝐴 < (𝑚 + 𝐾))) |
| 49 | 28, 37, 48 | mpjaodan 799 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
| 50 | 49 | ex 115 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)))) |
| 51 | 50 | rexlimdva 2614 |
. . 3
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)))) |
| 52 | 51 | imp 124 |
. 2
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
| 53 | | breq1 4037 |
. . . 4
⊢ (𝑚 = 𝑗 → (𝑚 ≤ 𝐴 ↔ 𝑗 ≤ 𝐴)) |
| 54 | | oveq1 5932 |
. . . . 5
⊢ (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾)) |
| 55 | 54 | breq2d 4046 |
. . . 4
⊢ (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾))) |
| 56 | 53, 55 | anbi12d 473 |
. . 3
⊢ (𝑚 = 𝑗 → ((𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾)) ↔ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾)))) |
| 57 | 56 | cbvrexv 2730 |
. 2
⊢
(∃𝑚 ∈
ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗 ≤ 𝐴 ∧ 𝐴 < (𝑗 + 𝐾))) |
| 58 | 52, 57 | sylibr 134 |
1
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐾))) |