ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemstep GIF version

Theorem exbtwnzlemstep 10183
Description: Lemma for exbtwnzlemex 10185. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemstep.k (𝜑𝐾 ∈ ℕ)
exbtwnzlemstep.a (𝜑𝐴 ∈ ℝ)
exbtwnzlemstep.tri ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
Assertion
Ref Expression
exbtwnzlemstep ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑚,𝐾,𝑛   𝜑,𝑚,𝑛

Proof of Theorem exbtwnzlemstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpllr 524 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℤ)
2 exbtwnzlemstep.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
32ad3antrrr 484 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℕ)
43nnzd 9312 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℤ)
51, 4zaddcld 9317 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℤ)
6 simpr 109 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ≤ 𝐴)
7 exbtwnzlemstep.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
87ad3antrrr 484 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 ∈ ℝ)
95zred 9313 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℝ)
10 1red 7914 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℝ)
119, 10readdcld 7928 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ∈ ℝ)
123nnred 8870 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℝ)
139, 12readdcld 7928 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 𝐾) ∈ ℝ)
14 simplrr 526 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1)))
151zcnd 9314 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℂ)
163nncnd 8871 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℂ)
17 1cnd 7915 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℂ)
1815, 16, 17addassd 7921 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) = (𝑚 + (𝐾 + 1)))
1914, 18breqtrrd 4010 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 1))
203nnge1d 8900 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ≤ 𝐾)
2110, 12, 9, 20leadd2dd 8458 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ≤ ((𝑚 + 𝐾) + 𝐾))
228, 11, 13, 19, 21ltletrd 8321 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 𝐾))
23 breq1 3985 . . . . . . . . 9 (𝑗 = (𝑚 + 𝐾) → (𝑗𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴))
24 oveq1 5849 . . . . . . . . . 10 (𝑗 = (𝑚 + 𝐾) → (𝑗 + 𝐾) = ((𝑚 + 𝐾) + 𝐾))
2524breq2d 3994 . . . . . . . . 9 (𝑗 = (𝑚 + 𝐾) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 𝐾) + 𝐾)))
2623, 25anbi12d 465 . . . . . . . 8 (𝑗 = (𝑚 + 𝐾) → ((𝑗𝐴𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 𝐾) ≤ 𝐴𝐴 < ((𝑚 + 𝐾) + 𝐾))))
2726rspcev 2830 . . . . . . 7 (((𝑚 + 𝐾) ∈ ℤ ∧ ((𝑚 + 𝐾) ≤ 𝐴𝐴 < ((𝑚 + 𝐾) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
285, 6, 22, 27syl12anc 1226 . . . . . 6 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
29 simpllr 524 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ)
30 simplrl 525 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚𝐴)
31 simpr 109 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾))
32 breq1 3985 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
33 oveq1 5849 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾))
3433breq2d 3994 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾)))
3532, 34anbi12d 465 . . . . . . . 8 (𝑗 = 𝑚 → ((𝑗𝐴𝐴 < (𝑗 + 𝐾)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝐾))))
3635rspcev 2830 . . . . . . 7 ((𝑚 ∈ ℤ ∧ (𝑚𝐴𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
3729, 30, 31, 36syl12anc 1226 . . . . . 6 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
38 breq1 3985 . . . . . . . 8 (𝑛 = (𝑚 + 𝐾) → (𝑛𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴))
39 breq2 3986 . . . . . . . 8 (𝑛 = (𝑚 + 𝐾) → (𝐴 < 𝑛𝐴 < (𝑚 + 𝐾)))
4038, 39orbi12d 783 . . . . . . 7 (𝑛 = (𝑚 + 𝐾) → ((𝑛𝐴𝐴 < 𝑛) ↔ ((𝑚 + 𝐾) ≤ 𝐴𝐴 < (𝑚 + 𝐾))))
41 exbtwnzlemstep.tri . . . . . . . . 9 ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
4241ralrimiva 2539 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛))
4342ad2antrr 480 . . . . . . 7 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛))
44 simplr 520 . . . . . . . 8 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ)
452ad2antrr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℕ)
4645nnzd 9312 . . . . . . . 8 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℤ)
4744, 46zaddcld 9317 . . . . . . 7 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℤ)
4840, 43, 47rspcdva 2835 . . . . . 6 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 𝐾) ≤ 𝐴𝐴 < (𝑚 + 𝐾)))
4928, 37, 48mpjaodan 788 . . . . 5 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
5049ex 114 . . . 4 ((𝜑𝑚 ∈ ℤ) → ((𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾))))
5150rexlimdva 2583 . . 3 (𝜑 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾))))
5251imp 123 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
53 breq1 3985 . . . 4 (𝑚 = 𝑗 → (𝑚𝐴𝑗𝐴))
54 oveq1 5849 . . . . 5 (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾))
5554breq2d 3994 . . . 4 (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾)))
5653, 55anbi12d 465 . . 3 (𝑚 = 𝑗 → ((𝑚𝐴𝐴 < (𝑚 + 𝐾)) ↔ (𝑗𝐴𝐴 < (𝑗 + 𝐾))))
5756cbvrexv 2693 . 2 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
5852, 57sylibr 133 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  wral 2444  wrex 2445   class class class wbr 3982  (class class class)co 5842  cr 7752  1c1 7754   + caddc 7756   < clt 7933  cle 7934  cn 8857  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  exbtwnzlemshrink  10184
  Copyright terms: Public domain W3C validator