ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemstep GIF version

Theorem exbtwnzlemstep 10462
Description: Lemma for exbtwnzlemex 10464. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemstep.k (𝜑𝐾 ∈ ℕ)
exbtwnzlemstep.a (𝜑𝐴 ∈ ℝ)
exbtwnzlemstep.tri ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
Assertion
Ref Expression
exbtwnzlemstep ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑚,𝐾,𝑛   𝜑,𝑚,𝑛

Proof of Theorem exbtwnzlemstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpllr 534 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℤ)
2 exbtwnzlemstep.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
32ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℕ)
43nnzd 9564 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℤ)
51, 4zaddcld 9569 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℤ)
6 simpr 110 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ≤ 𝐴)
7 exbtwnzlemstep.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
87ad3antrrr 492 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 ∈ ℝ)
95zred 9565 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℝ)
10 1red 8157 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℝ)
119, 10readdcld 8172 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ∈ ℝ)
123nnred 9119 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℝ)
139, 12readdcld 8172 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 𝐾) ∈ ℝ)
14 simplrr 536 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1)))
151zcnd 9566 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℂ)
163nncnd 9120 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℂ)
17 1cnd 8158 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℂ)
1815, 16, 17addassd 8165 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) = (𝑚 + (𝐾 + 1)))
1914, 18breqtrrd 4110 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 1))
203nnge1d 9149 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ≤ 𝐾)
2110, 12, 9, 20leadd2dd 8703 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ≤ ((𝑚 + 𝐾) + 𝐾))
228, 11, 13, 19, 21ltletrd 8566 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 𝐾))
23 breq1 4085 . . . . . . . . 9 (𝑗 = (𝑚 + 𝐾) → (𝑗𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴))
24 oveq1 6007 . . . . . . . . . 10 (𝑗 = (𝑚 + 𝐾) → (𝑗 + 𝐾) = ((𝑚 + 𝐾) + 𝐾))
2524breq2d 4094 . . . . . . . . 9 (𝑗 = (𝑚 + 𝐾) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 𝐾) + 𝐾)))
2623, 25anbi12d 473 . . . . . . . 8 (𝑗 = (𝑚 + 𝐾) → ((𝑗𝐴𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 𝐾) ≤ 𝐴𝐴 < ((𝑚 + 𝐾) + 𝐾))))
2726rspcev 2907 . . . . . . 7 (((𝑚 + 𝐾) ∈ ℤ ∧ ((𝑚 + 𝐾) ≤ 𝐴𝐴 < ((𝑚 + 𝐾) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
285, 6, 22, 27syl12anc 1269 . . . . . 6 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
29 simpllr 534 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ)
30 simplrl 535 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚𝐴)
31 simpr 110 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾))
32 breq1 4085 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
33 oveq1 6007 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾))
3433breq2d 4094 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾)))
3532, 34anbi12d 473 . . . . . . . 8 (𝑗 = 𝑚 → ((𝑗𝐴𝐴 < (𝑗 + 𝐾)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝐾))))
3635rspcev 2907 . . . . . . 7 ((𝑚 ∈ ℤ ∧ (𝑚𝐴𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
3729, 30, 31, 36syl12anc 1269 . . . . . 6 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
38 breq1 4085 . . . . . . . 8 (𝑛 = (𝑚 + 𝐾) → (𝑛𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴))
39 breq2 4086 . . . . . . . 8 (𝑛 = (𝑚 + 𝐾) → (𝐴 < 𝑛𝐴 < (𝑚 + 𝐾)))
4038, 39orbi12d 798 . . . . . . 7 (𝑛 = (𝑚 + 𝐾) → ((𝑛𝐴𝐴 < 𝑛) ↔ ((𝑚 + 𝐾) ≤ 𝐴𝐴 < (𝑚 + 𝐾))))
41 exbtwnzlemstep.tri . . . . . . . . 9 ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
4241ralrimiva 2603 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛))
4342ad2antrr 488 . . . . . . 7 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛))
44 simplr 528 . . . . . . . 8 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ)
452ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℕ)
4645nnzd 9564 . . . . . . . 8 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℤ)
4744, 46zaddcld 9569 . . . . . . 7 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℤ)
4840, 43, 47rspcdva 2912 . . . . . 6 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 𝐾) ≤ 𝐴𝐴 < (𝑚 + 𝐾)))
4928, 37, 48mpjaodan 803 . . . . 5 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
5049ex 115 . . . 4 ((𝜑𝑚 ∈ ℤ) → ((𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾))))
5150rexlimdva 2648 . . 3 (𝜑 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾))))
5251imp 124 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
53 breq1 4085 . . . 4 (𝑚 = 𝑗 → (𝑚𝐴𝑗𝐴))
54 oveq1 6007 . . . . 5 (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾))
5554breq2d 4094 . . . 4 (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾)))
5653, 55anbi12d 473 . . 3 (𝑚 = 𝑗 → ((𝑚𝐴𝐴 < (𝑚 + 𝐾)) ↔ (𝑗𝐴𝐴 < (𝑗 + 𝐾))))
5756cbvrexv 2766 . 2 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
5852, 57sylibr 134 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  wral 2508  wrex 2509   class class class wbr 4082  (class class class)co 6000  cr 7994  1c1 7996   + caddc 7998   < clt 8177  cle 8178  cn 9106  cz 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443
This theorem is referenced by:  exbtwnzlemshrink  10463
  Copyright terms: Public domain W3C validator