ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemstep GIF version

Theorem exbtwnzlemstep 9808
Description: Lemma for exbtwnzlemex 9810. Induction step. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemstep.k (𝜑𝐾 ∈ ℕ)
exbtwnzlemstep.a (𝜑𝐴 ∈ ℝ)
exbtwnzlemstep.tri ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
Assertion
Ref Expression
exbtwnzlemstep ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑚,𝐾,𝑛   𝜑,𝑚,𝑛

Proof of Theorem exbtwnzlemstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpllr 502 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℤ)
2 exbtwnzlemstep.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
32ad3antrrr 477 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℕ)
43nnzd 8966 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℤ)
51, 4zaddcld 8971 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℤ)
6 simpr 109 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ≤ 𝐴)
7 exbtwnzlemstep.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
87ad3antrrr 477 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 ∈ ℝ)
95zred 8967 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → (𝑚 + 𝐾) ∈ ℝ)
10 1red 7600 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℝ)
119, 10readdcld 7614 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ∈ ℝ)
123nnred 8533 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℝ)
139, 12readdcld 7614 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 𝐾) ∈ ℝ)
14 simplrr 504 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1)))
151zcnd 8968 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝑚 ∈ ℂ)
163nncnd 8534 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐾 ∈ ℂ)
17 1cnd 7601 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ∈ ℂ)
1815, 16, 17addassd 7607 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) = (𝑚 + (𝐾 + 1)))
1914, 18breqtrrd 3893 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 1))
203nnge1d 8563 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 1 ≤ 𝐾)
2110, 12, 9, 20leadd2dd 8134 . . . . . . . 8 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ((𝑚 + 𝐾) + 1) ≤ ((𝑚 + 𝐾) + 𝐾))
228, 11, 13, 19, 21ltletrd 7998 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → 𝐴 < ((𝑚 + 𝐾) + 𝐾))
23 breq1 3870 . . . . . . . . 9 (𝑗 = (𝑚 + 𝐾) → (𝑗𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴))
24 oveq1 5697 . . . . . . . . . 10 (𝑗 = (𝑚 + 𝐾) → (𝑗 + 𝐾) = ((𝑚 + 𝐾) + 𝐾))
2524breq2d 3879 . . . . . . . . 9 (𝑗 = (𝑚 + 𝐾) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 𝐾) + 𝐾)))
2623, 25anbi12d 458 . . . . . . . 8 (𝑗 = (𝑚 + 𝐾) → ((𝑗𝐴𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 𝐾) ≤ 𝐴𝐴 < ((𝑚 + 𝐾) + 𝐾))))
2726rspcev 2736 . . . . . . 7 (((𝑚 + 𝐾) ∈ ℤ ∧ ((𝑚 + 𝐾) ≤ 𝐴𝐴 < ((𝑚 + 𝐾) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
285, 6, 22, 27syl12anc 1179 . . . . . 6 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 𝐾) ≤ 𝐴) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
29 simpllr 502 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ)
30 simplrl 503 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚𝐴)
31 simpr 109 . . . . . . 7 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾))
32 breq1 3870 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
33 oveq1 5697 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾))
3433breq2d 3879 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾)))
3532, 34anbi12d 458 . . . . . . . 8 (𝑗 = 𝑚 → ((𝑗𝐴𝐴 < (𝑗 + 𝐾)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝐾))))
3635rspcev 2736 . . . . . . 7 ((𝑚 ∈ ℤ ∧ (𝑚𝐴𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
3729, 30, 31, 36syl12anc 1179 . . . . . 6 ((((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
38 breq1 3870 . . . . . . . 8 (𝑛 = (𝑚 + 𝐾) → (𝑛𝐴 ↔ (𝑚 + 𝐾) ≤ 𝐴))
39 breq2 3871 . . . . . . . 8 (𝑛 = (𝑚 + 𝐾) → (𝐴 < 𝑛𝐴 < (𝑚 + 𝐾)))
4038, 39orbi12d 745 . . . . . . 7 (𝑛 = (𝑚 + 𝐾) → ((𝑛𝐴𝐴 < 𝑛) ↔ ((𝑚 + 𝐾) ≤ 𝐴𝐴 < (𝑚 + 𝐾))))
41 exbtwnzlemstep.tri . . . . . . . . 9 ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
4241ralrimiva 2458 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛))
4342ad2antrr 473 . . . . . . 7 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∀𝑛 ∈ ℤ (𝑛𝐴𝐴 < 𝑛))
44 simplr 498 . . . . . . . 8 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ)
452ad2antrr 473 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℕ)
4645nnzd 8966 . . . . . . . 8 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℤ)
4744, 46zaddcld 8971 . . . . . . 7 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℤ)
4840, 43, 47rspcdva 2741 . . . . . 6 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 𝐾) ≤ 𝐴𝐴 < (𝑚 + 𝐾)))
4928, 37, 48mpjaodan 750 . . . . 5 (((𝜑𝑚 ∈ ℤ) ∧ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
5049ex 114 . . . 4 ((𝜑𝑚 ∈ ℤ) → ((𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾))))
5150rexlimdva 2502 . . 3 (𝜑 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾))))
5251imp 123 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
53 breq1 3870 . . . 4 (𝑚 = 𝑗 → (𝑚𝐴𝑗𝐴))
54 oveq1 5697 . . . . 5 (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾))
5554breq2d 3879 . . . 4 (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾)))
5653, 55anbi12d 458 . . 3 (𝑚 = 𝑗 → ((𝑚𝐴𝐴 < (𝑚 + 𝐾)) ↔ (𝑗𝐴𝐴 < (𝑗 + 𝐾))))
5756cbvrexv 2605 . 2 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗𝐴𝐴 < (𝑗 + 𝐾)))
5852, 57sylibr 133 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 667   = wceq 1296  wcel 1445  wral 2370  wrex 2371   class class class wbr 3867  (class class class)co 5690  cr 7446  1c1 7448   + caddc 7450   < clt 7619  cle 7620  cn 8520  cz 8848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849
This theorem is referenced by:  exbtwnzlemshrink  9809
  Copyright terms: Public domain W3C validator