ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsfrnel2 GIF version

Theorem xpsfrnel2 13178
Description: Elementhood in the target space of the function 𝐹 appearing in xpsval 13184. (Contributed by Mario Carneiro, 15-Aug-2015.)
Assertion
Ref Expression
xpsfrnel2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝑌

Proof of Theorem xpsfrnel2
StepHypRef Expression
1 xpsfrnel 13176 . 2 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))
2 fnpr2ob 13172 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) ↔ {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
32biimpri 133 . . . 4 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o → (𝑋 ∈ V ∧ 𝑌 ∈ V))
433ad2ant1 1021 . . 3 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
5 elex 2783 . . . 4 (𝑋𝐴𝑋 ∈ V)
6 elex 2783 . . . 4 (𝑌𝐵𝑌 ∈ V)
75, 6anim12i 338 . . 3 ((𝑋𝐴𝑌𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
8 3anass 985 . . . 4 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)))
9 fnpr2o 13171 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o)
109biantrurd 305 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵))))
11 fvpr0o 13173 . . . . . . 7 (𝑋 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) = 𝑋)
1211eleq1d 2274 . . . . . 6 (𝑋 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴𝑋𝐴))
13 fvpr1o 13174 . . . . . . 7 (𝑌 ∈ V → ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) = 𝑌)
1413eleq1d 2274 . . . . . 6 (𝑌 ∈ V → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵𝑌𝐵))
1512, 14bi2anan9 606 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → ((({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
1610, 15bitr3d 190 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵)) ↔ (𝑋𝐴𝑌𝐵)))
178, 16bitrid 192 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵)))
184, 7, 17pm5.21nii 706 . 2 (({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} Fn 2o ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘∅) ∈ 𝐴 ∧ ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩}‘1o) ∈ 𝐵) ↔ (𝑋𝐴𝑌𝐵))
191, 18bitri 184 1 ({⟨∅, 𝑋⟩, ⟨1o, 𝑌⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑋𝐴𝑌𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  Vcvv 2772  c0 3460  ifcif 3571  {cpr 3634  cop 3636   Fn wfn 5266  cfv 5271  1oc1o 6495  2oc2o 6496  Xcixp 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6502  df-2o 6503  df-er 6620  df-ixp 6786  df-en 6828  df-fin 6830
This theorem is referenced by:  xpscf  13179  xpsff1o  13181
  Copyright terms: Public domain W3C validator