ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omeo GIF version

Theorem omeo 11631
Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omeo (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))

Proof of Theorem omeo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 11606 . . . . . 6 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 2z 9106 . . . . . . 7 2 ∈ ℤ
3 divides 11531 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
42, 3mpan 421 . . . . . 6 (𝐵 ∈ ℤ → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
51, 4bi2anan9 596 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵)))
6 reeanv 2603 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
7 zsubcl 9119 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎𝑏) ∈ ℤ)
8 zcn 9083 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
9 zcn 9083 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
10 2cn 8815 . . . . . . . . . . . . 13 2 ∈ ℂ
11 subdi 8171 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
1210, 11mp3an1 1303 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎𝑏)) = ((2 · 𝑎) − (2 · 𝑏)))
1312oveq1d 5797 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
14 mulcl 7771 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
1510, 14mpan 421 . . . . . . . . . . . 12 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
16 mulcl 7771 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
1710, 16mpan 421 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
18 ax-1cn 7737 . . . . . . . . . . . . 13 1 ∈ ℂ
19 addsub 7997 . . . . . . . . . . . . 13 (((2 · 𝑎) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
2018, 19mp3an2 1304 . . . . . . . . . . . 12 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
2115, 17, 20syl2an 287 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) − (2 · 𝑏)) + 1))
22 mulcom 7773 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) = (𝑏 · 2))
2310, 22mpan 421 . . . . . . . . . . . . 13 (𝑏 ∈ ℂ → (2 · 𝑏) = (𝑏 · 2))
2423oveq2d 5798 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
2524adantl 275 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) − (2 · 𝑏)) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
2613, 21, 253eqtr2d 2179 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
278, 9, 26syl2an 287 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
28 oveq2 5790 . . . . . . . . . . . 12 (𝑐 = (𝑎𝑏) → (2 · 𝑐) = (2 · (𝑎𝑏)))
2928oveq1d 5797 . . . . . . . . . . 11 (𝑐 = (𝑎𝑏) → ((2 · 𝑐) + 1) = ((2 · (𝑎𝑏)) + 1))
3029eqeq1d 2149 . . . . . . . . . 10 (𝑐 = (𝑎𝑏) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2))))
3130rspcev 2793 . . . . . . . . 9 (((𝑎𝑏) ∈ ℤ ∧ ((2 · (𝑎𝑏)) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2))) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
327, 27, 31syl2anc 409 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)))
33 oveq12 5791 . . . . . . . . . 10 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑎) + 1) − (𝑏 · 2)) = (𝐴𝐵))
3433eqeq2d 2152 . . . . . . . . 9 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3534rexbidv 2439 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) − (𝑏 · 2)) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3632, 35syl5ibcom 154 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
3736rexlimivv 2558 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
386, 37sylbir 134 . . . . 5 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
395, 38syl6bi 162 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4039imp 123 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
4140an4s 578 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵))
42 zsubcl 9119 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
4342ad2ant2r 501 . . 3 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (𝐴𝐵) ∈ ℤ)
44 odd2np1 11606 . . 3 ((𝐴𝐵) ∈ ℤ → (¬ 2 ∥ (𝐴𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4543, 44syl 14 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (¬ 2 ∥ (𝐴𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴𝐵)))
4641, 45mpbird 166 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wrex 2418   class class class wbr 3937  (class class class)co 5782  cc 7642  1c1 7645   + caddc 7647   · cmul 7649  cmin 7957  2c2 8795  cz 9078  cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-dvds 11530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator