| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prubl | GIF version | ||
| Description: A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| prubl | ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐿 ↔ 𝐶 ∈ 𝐿)) | |
| 2 | 1 | biimpcd 159 | . . . . . 6 ⊢ (𝐵 ∈ 𝐿 → (𝐵 = 𝐶 → 𝐶 ∈ 𝐿)) |
| 3 | 2 | adantl 277 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → (𝐵 = 𝐶 → 𝐶 ∈ 𝐿)) |
| 4 | prcdnql 7617 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → (𝐶 <Q 𝐵 → 𝐶 ∈ 𝐿)) | |
| 5 | 3, 4 | jaod 719 | . . . 4 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → ((𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵) → 𝐶 ∈ 𝐿)) |
| 6 | 5 | con3d 632 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → (¬ 𝐶 ∈ 𝐿 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
| 7 | 6 | adantr 276 | . 2 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
| 8 | elprnql 7614 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) | |
| 9 | nqtric 7532 | . . 3 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) | |
| 10 | 8, 9 | sylan 283 | . 2 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶 ∨ 𝐶 <Q 𝐵))) |
| 11 | 7, 10 | sylibrd 169 | 1 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 〈cop 3641 class class class wbr 4051 Qcnq 7413 <Q cltq 7418 Pcnp 7424 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-eprel 4344 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-mi 7439 df-lti 7440 df-enq 7480 df-nqqs 7481 df-ltnqqs 7486 df-inp 7599 |
| This theorem is referenced by: prltlu 7620 |
| Copyright terms: Public domain | W3C validator |