ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prubl GIF version

Theorem prubl 7619
Description: A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.)
Assertion
Ref Expression
prubl (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶Q) → (¬ 𝐶𝐿𝐵 <Q 𝐶))

Proof of Theorem prubl
StepHypRef Expression
1 eleq1 2269 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐿𝐶𝐿))
21biimpcd 159 . . . . . 6 (𝐵𝐿 → (𝐵 = 𝐶𝐶𝐿))
32adantl 277 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐵 = 𝐶𝐶𝐿))
4 prcdnql 7617 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))
53, 4jaod 719 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ((𝐵 = 𝐶𝐶 <Q 𝐵) → 𝐶𝐿))
65con3d 632 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (¬ 𝐶𝐿 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
76adantr 276 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶Q) → (¬ 𝐶𝐿 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
8 elprnql 7614 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → 𝐵Q)
9 nqtric 7532 . . 3 ((𝐵Q𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
108, 9sylan 283 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
117, 10sylibrd 169 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶Q) → (¬ 𝐶𝐿𝐵 <Q 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  cop 3641   class class class wbr 4051  Qcnq 7413   <Q cltq 7418  Pcnp 7424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-mi 7439  df-lti 7440  df-enq 7480  df-nqqs 7481  df-ltnqqs 7486  df-inp 7599
This theorem is referenced by:  prltlu  7620
  Copyright terms: Public domain W3C validator