![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcomnqg | GIF version |
Description: Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.) |
Ref | Expression |
---|---|
mulcomnqg | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nqqs 7410 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
2 | mulpipqqs 7435 | . 2 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈𝑧, 𝑤〉] ~Q ) = [〈(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)〉] ~Q ) | |
3 | mulpipqqs 7435 | . 2 ⊢ (((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧ (𝑥 ∈ N ∧ 𝑦 ∈ N)) → ([〈𝑧, 𝑤〉] ~Q ·Q [〈𝑥, 𝑦〉] ~Q ) = [〈(𝑧 ·N 𝑥), (𝑤 ·N 𝑦)〉] ~Q ) | |
4 | mulcompig 7393 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑧 ∈ N) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥)) | |
5 | 4 | ad2ant2r 509 | . 2 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥)) |
6 | mulcompig 7393 | . . 3 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦)) | |
7 | 6 | ad2ant2l 508 | . 2 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦)) |
8 | 1, 2, 3, 5, 7 | ecovicom 6699 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 Ncnpi 7334 ·N cmi 7336 ~Q ceq 7341 Qcnq 7342 ·Q cmq 7345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-mi 7368 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-mqqs 7412 |
This theorem is referenced by: recmulnqg 7453 recrecnq 7456 rec1nq 7457 lt2mulnq 7467 halfnqq 7472 prarloclemarch 7480 prarloclemarch2 7481 ltrnqg 7482 prarloclemlt 7555 addnqprllem 7589 addnqprulem 7590 addnqprl 7591 addnqpru 7592 appdivnq 7625 prmuloclemcalc 7627 mulnqprl 7630 mulnqpru 7631 mullocprlem 7632 mulclpr 7634 mulcomprg 7642 distrlem4prl 7646 distrlem4pru 7647 1idprl 7652 1idpru 7653 recexprlem1ssl 7695 recexprlem1ssu 7696 recexprlemss1l 7697 recexprlemss1u 7698 |
Copyright terms: Public domain | W3C validator |