| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcomnqg | GIF version | ||
| Description: Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| Ref | Expression |
|---|---|
| mulcomnqg | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7468 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
| 2 | mulpipqqs 7493 | . 2 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈𝑧, 𝑤〉] ~Q ) = [〈(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)〉] ~Q ) | |
| 3 | mulpipqqs 7493 | . 2 ⊢ (((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧ (𝑥 ∈ N ∧ 𝑦 ∈ N)) → ([〈𝑧, 𝑤〉] ~Q ·Q [〈𝑥, 𝑦〉] ~Q ) = [〈(𝑧 ·N 𝑥), (𝑤 ·N 𝑦)〉] ~Q ) | |
| 4 | mulcompig 7451 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑧 ∈ N) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥)) | |
| 5 | 4 | ad2ant2r 509 | . 2 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥)) |
| 6 | mulcompig 7451 | . . 3 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦)) | |
| 7 | 6 | ad2ant2l 508 | . 2 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦)) |
| 8 | 1, 2, 3, 5, 7 | ecovicom 6737 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 Ncnpi 7392 ·N cmi 7394 ~Q ceq 7399 Qcnq 7400 ·Q cmq 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-mi 7426 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-mqqs 7470 |
| This theorem is referenced by: recmulnqg 7511 recrecnq 7514 rec1nq 7515 lt2mulnq 7525 halfnqq 7530 prarloclemarch 7538 prarloclemarch2 7539 ltrnqg 7540 prarloclemlt 7613 addnqprllem 7647 addnqprulem 7648 addnqprl 7649 addnqpru 7650 appdivnq 7683 prmuloclemcalc 7685 mulnqprl 7688 mulnqpru 7689 mullocprlem 7690 mulclpr 7692 mulcomprg 7700 distrlem4prl 7704 distrlem4pru 7705 1idprl 7710 1idpru 7711 recexprlem1ssl 7753 recexprlem1ssu 7754 recexprlemss1l 7755 recexprlemss1u 7756 |
| Copyright terms: Public domain | W3C validator |