ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomnqg GIF version

Theorem mulcomnqg 7345
Description: Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
mulcomnqg ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴))

Proof of Theorem mulcomnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7310 . 2 Q = ((N × N) / ~Q )
2 mulpipqqs 7335 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)⟩] ~Q )
3 mulpipqqs 7335 . 2 (((𝑧N𝑤N) ∧ (𝑥N𝑦N)) → ([⟨𝑧, 𝑤⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑧 ·N 𝑥), (𝑤 ·N 𝑦)⟩] ~Q )
4 mulcompig 7293 . . 3 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥))
54ad2ant2r 506 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥))
6 mulcompig 7293 . . 3 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦))
76ad2ant2l 505 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦))
81, 2, 3, 5, 7ecovicom 6621 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  (class class class)co 5853  Ncnpi 7234   ·N cmi 7236   ~Q ceq 7241  Qcnq 7242   ·Q cmq 7245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-mqqs 7312
This theorem is referenced by:  recmulnqg  7353  recrecnq  7356  rec1nq  7357  lt2mulnq  7367  halfnqq  7372  prarloclemarch  7380  prarloclemarch2  7381  ltrnqg  7382  prarloclemlt  7455  addnqprllem  7489  addnqprulem  7490  addnqprl  7491  addnqpru  7492  appdivnq  7525  prmuloclemcalc  7527  mulnqprl  7530  mulnqpru  7531  mullocprlem  7532  mulclpr  7534  mulcomprg  7542  distrlem4prl  7546  distrlem4pru  7547  1idprl  7552  1idpru  7553  recexprlem1ssl  7595  recexprlem1ssu  7596  recexprlemss1l  7597  recexprlemss1u  7598
  Copyright terms: Public domain W3C validator