![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcomnqg | GIF version |
Description: Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.) |
Ref | Expression |
---|---|
mulcomnqg | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nqqs 7408 | . 2 ⊢ Q = ((N × N) / ~Q ) | |
2 | mulpipqqs 7433 | . 2 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q ·Q [〈𝑧, 𝑤〉] ~Q ) = [〈(𝑥 ·N 𝑧), (𝑦 ·N 𝑤)〉] ~Q ) | |
3 | mulpipqqs 7433 | . 2 ⊢ (((𝑧 ∈ N ∧ 𝑤 ∈ N) ∧ (𝑥 ∈ N ∧ 𝑦 ∈ N)) → ([〈𝑧, 𝑤〉] ~Q ·Q [〈𝑥, 𝑦〉] ~Q ) = [〈(𝑧 ·N 𝑥), (𝑤 ·N 𝑦)〉] ~Q ) | |
4 | mulcompig 7391 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑧 ∈ N) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥)) | |
5 | 4 | ad2ant2r 509 | . 2 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥)) |
6 | mulcompig 7391 | . . 3 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦)) | |
7 | 6 | ad2ant2l 508 | . 2 ⊢ (((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ N ∧ 𝑤 ∈ N)) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦)) |
8 | 1, 2, 3, 5, 7 | ecovicom 6697 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 Ncnpi 7332 ·N cmi 7334 ~Q ceq 7339 Qcnq 7340 ·Q cmq 7343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-mi 7366 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-mqqs 7410 |
This theorem is referenced by: recmulnqg 7451 recrecnq 7454 rec1nq 7455 lt2mulnq 7465 halfnqq 7470 prarloclemarch 7478 prarloclemarch2 7479 ltrnqg 7480 prarloclemlt 7553 addnqprllem 7587 addnqprulem 7588 addnqprl 7589 addnqpru 7590 appdivnq 7623 prmuloclemcalc 7625 mulnqprl 7628 mulnqpru 7629 mullocprlem 7630 mulclpr 7632 mulcomprg 7640 distrlem4prl 7644 distrlem4pru 7645 1idprl 7650 1idpru 7651 recexprlem1ssl 7693 recexprlem1ssu 7694 recexprlemss1l 7695 recexprlemss1u 7696 |
Copyright terms: Public domain | W3C validator |