Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcomsrg | GIF version |
Description: Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
Ref | Expression |
---|---|
addcomsrg | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7668 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | addsrpr 7686 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
3 | addsrpr 7686 | . 2 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([〈𝑧, 𝑤〉] ~R +R [〈𝑥, 𝑦〉] ~R ) = [〈(𝑧 +P 𝑥), (𝑤 +P 𝑦)〉] ~R ) | |
4 | addcomprg 7519 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥)) | |
5 | 4 | ad2ant2r 501 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥)) |
6 | addcomprg 7519 | . . 3 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦)) | |
7 | 6 | ad2ant2l 500 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦)) |
8 | 1, 2, 3, 5, 7 | ecovicom 6609 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 Pcnp 7232 +P cpp 7234 ~R cer 7237 Rcnr 7238 +R cplr 7242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-iplp 7409 df-enr 7667 df-nr 7668 df-plr 7669 |
This theorem is referenced by: pn0sr 7712 caucvgsrlemoffval 7737 caucvgsrlemoffcau 7739 caucvgsrlemoffgt1 7740 caucvgsrlemoffres 7741 caucvgsr 7743 map2psrprg 7746 axaddcom 7811 axmulcom 7812 axmulass 7814 axdistr 7815 axi2m1 7816 axcnre 7822 |
Copyright terms: Public domain | W3C validator |