ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomsrg GIF version

Theorem addcomsrg 7398
Description: Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
addcomsrg ((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))

Proof of Theorem addcomsrg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7370 . 2 R = ((P × P) / ~R )
2 addsrpr 7388 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R )
3 addsrpr 7388 . 2 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑧 +P 𝑥), (𝑤 +P 𝑦)⟩] ~R )
4 addcomprg 7234 . . 3 ((𝑥P𝑧P) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥))
54ad2ant2r 494 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥))
6 addcomprg 7234 . . 3 ((𝑦P𝑤P) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦))
76ad2ant2l 493 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦))
81, 2, 3, 5, 7ecovicom 6440 1 ((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  (class class class)co 5690  Pcnp 6947   +P cpp 6949   ~R cer 6952  Rcnr 6953   +R cplr 6957
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-1o 6219  df-2o 6220  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-pli 6961  df-mi 6962  df-lti 6963  df-plpq 7000  df-mpq 7001  df-enq 7003  df-nqqs 7004  df-plqqs 7005  df-mqqs 7006  df-1nqqs 7007  df-rq 7008  df-ltnqqs 7009  df-enq0 7080  df-nq0 7081  df-0nq0 7082  df-plq0 7083  df-mq0 7084  df-inp 7122  df-iplp 7124  df-enr 7369  df-nr 7370  df-plr 7371
This theorem is referenced by:  pn0sr  7414  caucvgsrlemoffval  7438  caucvgsrlemoffcau  7440  caucvgsrlemoffgt1  7441  caucvgsrlemoffres  7442  caucvgsr  7444  axaddcom  7502  axmulcom  7503  axmulass  7505  axdistr  7506  axi2m1  7507  axcnre  7513
  Copyright terms: Public domain W3C validator