![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomsrg | GIF version |
Description: Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
Ref | Expression |
---|---|
addcomsrg | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7729 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | addsrpr 7747 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R ) | |
3 | addsrpr 7747 | . 2 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑥 ∈ P ∧ 𝑦 ∈ P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑧 +P 𝑥), (𝑤 +P 𝑦)⟩] ~R ) | |
4 | addcomprg 7580 | . . 3 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥)) | |
5 | 4 | ad2ant2r 509 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥)) |
6 | addcomprg 7580 | . . 3 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦)) | |
7 | 6 | ad2ant2l 508 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦)) |
8 | 1, 2, 3, 5, 7 | ecovicom 6646 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 (class class class)co 5878 Pcnp 7293 +P cpp 7295 ~R cer 7298 Rcnr 7299 +R cplr 7303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-1o 6420 df-2o 6421 df-oadd 6424 df-omul 6425 df-er 6538 df-ec 6540 df-qs 6544 df-ni 7306 df-pli 7307 df-mi 7308 df-lti 7309 df-plpq 7346 df-mpq 7347 df-enq 7349 df-nqqs 7350 df-plqqs 7351 df-mqqs 7352 df-1nqqs 7353 df-rq 7354 df-ltnqqs 7355 df-enq0 7426 df-nq0 7427 df-0nq0 7428 df-plq0 7429 df-mq0 7430 df-inp 7468 df-iplp 7470 df-enr 7728 df-nr 7729 df-plr 7730 |
This theorem is referenced by: pn0sr 7773 caucvgsrlemoffval 7798 caucvgsrlemoffcau 7800 caucvgsrlemoffgt1 7801 caucvgsrlemoffres 7802 caucvgsr 7804 map2psrprg 7807 axaddcom 7872 axmulcom 7873 axmulass 7875 axdistr 7876 axi2m1 7877 axcnre 7883 |
Copyright terms: Public domain | W3C validator |