ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomsrg GIF version

Theorem addcomsrg 7824
Description: Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
addcomsrg ((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))

Proof of Theorem addcomsrg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7796 . 2 R = ((P × P) / ~R )
2 addsrpr 7814 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R )
3 addsrpr 7814 . 2 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑧 +P 𝑥), (𝑤 +P 𝑦)⟩] ~R )
4 addcomprg 7647 . . 3 ((𝑥P𝑧P) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥))
54ad2ant2r 509 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥))
6 addcomprg 7647 . . 3 ((𝑦P𝑤P) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦))
76ad2ant2l 508 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦))
81, 2, 3, 5, 7ecovicom 6703 1 ((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  (class class class)co 5923  Pcnp 7360   +P cpp 7362   ~R cer 7365  Rcnr 7366   +R cplr 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6593  df-ec 6595  df-qs 6599  df-ni 7373  df-pli 7374  df-mi 7375  df-lti 7376  df-plpq 7413  df-mpq 7414  df-enq 7416  df-nqqs 7417  df-plqqs 7418  df-mqqs 7419  df-1nqqs 7420  df-rq 7421  df-ltnqqs 7422  df-enq0 7493  df-nq0 7494  df-0nq0 7495  df-plq0 7496  df-mq0 7497  df-inp 7535  df-iplp 7537  df-enr 7795  df-nr 7796  df-plr 7797
This theorem is referenced by:  pn0sr  7840  caucvgsrlemoffval  7865  caucvgsrlemoffcau  7867  caucvgsrlemoffgt1  7868  caucvgsrlemoffres  7869  caucvgsr  7871  map2psrprg  7874  axaddcom  7939  axmulcom  7940  axmulass  7942  axdistr  7943  axi2m1  7944  axcnre  7950
  Copyright terms: Public domain W3C validator