ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomsrg GIF version

Theorem addcomsrg 7717
Description: Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
addcomsrg ((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))

Proof of Theorem addcomsrg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7689 . 2 R = ((P × P) / ~R )
2 addsrpr 7707 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R )
3 addsrpr 7707 . 2 (((𝑧P𝑤P) ∧ (𝑥P𝑦P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑥, 𝑦⟩] ~R ) = [⟨(𝑧 +P 𝑥), (𝑤 +P 𝑦)⟩] ~R )
4 addcomprg 7540 . . 3 ((𝑥P𝑧P) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥))
54ad2ant2r 506 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑥 +P 𝑧) = (𝑧 +P 𝑥))
6 addcomprg 7540 . . 3 ((𝑦P𝑤P) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦))
76ad2ant2l 505 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦 +P 𝑤) = (𝑤 +P 𝑦))
81, 2, 3, 5, 7ecovicom 6621 1 ((𝐴R𝐵R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  (class class class)co 5853  Pcnp 7253   +P cpp 7255   ~R cer 7258  Rcnr 7259   +R cplr 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-enr 7688  df-nr 7689  df-plr 7690
This theorem is referenced by:  pn0sr  7733  caucvgsrlemoffval  7758  caucvgsrlemoffcau  7760  caucvgsrlemoffgt1  7761  caucvgsrlemoffres  7762  caucvgsr  7764  map2psrprg  7767  axaddcom  7832  axmulcom  7833  axmulass  7835  axdistr  7836  axi2m1  7837  axcnre  7843
  Copyright terms: Public domain W3C validator