ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfvd GIF version

Theorem eqfnfvd 5616
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
eqfnfvd.1 (𝜑𝐹 Fn 𝐴)
eqfnfvd.2 (𝜑𝐺 Fn 𝐴)
eqfnfvd.3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
eqfnfvd (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem eqfnfvd
StepHypRef Expression
1 eqfnfvd.3 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
21ralrimiva 2550 . 2 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
3 eqfnfvd.1 . . 3 (𝜑𝐹 Fn 𝐴)
4 eqfnfvd.2 . . 3 (𝜑𝐺 Fn 𝐴)
5 eqfnfv 5613 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
63, 4, 5syl2anc 411 . 2 (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
72, 6mpbird 167 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455   Fn wfn 5211  cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224
This theorem is referenced by:  foeqcnvco  5790  f1eqcocnv  5791  offeq  6095  tfrlem1  6308  frecrdg  6408  updjudhcoinlf  7078  updjudhcoinrg  7079  nnnninfeq  7125  seq3val  10457  seqvalcd  10458  seq3feq2  10469  seq3feq  10471  seqfeq3  10511  seq3shft  10846  efcvgfsum  11674  xpsfeq  12763  upxp  13742  uptx  13744  dvidlemap  14130  dvrecap  14147  peano4nninf  14725  nninfsellemeqinf  14735  nninffeq  14739  refeq  14746
  Copyright terms: Public domain W3C validator