Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqfnfvd | GIF version |
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
2 | 1 | ralrimiva 2530 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
5 | eqfnfv 5562 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
6 | 3, 4, 5 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 2, 6 | mpbird 166 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∀wral 2435 Fn wfn 5162 ‘cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fn 5170 df-fv 5175 |
This theorem is referenced by: foeqcnvco 5735 f1eqcocnv 5736 offeq 6039 tfrlem1 6249 frecrdg 6349 updjudhcoinlf 7014 updjudhcoinrg 7015 seq3val 10339 seqvalcd 10340 seq3feq2 10351 seq3feq 10353 seqfeq3 10393 seq3shft 10720 efcvgfsum 11546 upxp 12632 uptx 12634 dvidlemap 13020 dvrecap 13037 peano4nninf 13539 nninfalllemn 13541 nninfsellemeqinf 13550 nninffeq 13554 refeq 13561 |
Copyright terms: Public domain | W3C validator |