ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfvd GIF version

Theorem eqfnfvd 5658
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
eqfnfvd.1 (𝜑𝐹 Fn 𝐴)
eqfnfvd.2 (𝜑𝐺 Fn 𝐴)
eqfnfvd.3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
eqfnfvd (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem eqfnfvd
StepHypRef Expression
1 eqfnfvd.3 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
21ralrimiva 2567 . 2 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
3 eqfnfvd.1 . . 3 (𝜑𝐹 Fn 𝐴)
4 eqfnfvd.2 . . 3 (𝜑𝐺 Fn 𝐴)
5 eqfnfv 5655 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
63, 4, 5syl2anc 411 . 2 (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
72, 6mpbird 167 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472   Fn wfn 5249  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  foeqcnvco  5833  f1eqcocnv  5834  offeq  6144  tfrlem1  6361  frecrdg  6461  updjudhcoinlf  7139  updjudhcoinrg  7140  nnnninfeq  7187  seq3val  10531  seqvalcd  10532  seq3feq2  10547  seq3feq  10551  seqfeq3  10600  seq3shft  10982  efcvgfsum  11810  nninfctlemfo  12177  xpsfeq  12928  upxp  14440  uptx  14442  dvidlemap  14845  dvrecap  14862  peano4nninf  15496  nninfsellemeqinf  15506  nninffeq  15510  refeq  15518
  Copyright terms: Public domain W3C validator