![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqfnfvd | GIF version |
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
2 | 1 | ralrimiva 2567 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
5 | eqfnfv 5655 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 2, 6 | mpbird 167 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Fn wfn 5249 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 |
This theorem is referenced by: foeqcnvco 5833 f1eqcocnv 5834 offeq 6144 tfrlem1 6361 frecrdg 6461 updjudhcoinlf 7139 updjudhcoinrg 7140 nnnninfeq 7187 seq3val 10531 seqvalcd 10532 seq3feq2 10547 seq3feq 10551 seqfeq3 10600 seq3shft 10982 efcvgfsum 11810 nninfctlemfo 12177 xpsfeq 12928 upxp 14440 uptx 14442 dvidlemap 14845 dvrecap 14862 peano4nninf 15496 nninfsellemeqinf 15506 nninffeq 15510 refeq 15518 |
Copyright terms: Public domain | W3C validator |