ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtneii GIF version

Theorem gtneii 8238
Description: 'Less than' implies not equal. See also gtapii 8777 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
ltneii.2 𝐴 < 𝐵
Assertion
Ref Expression
gtneii 𝐵𝐴

Proof of Theorem gtneii
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 ltneii.2 . 2 𝐴 < 𝐵
3 ltne 8227 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
41, 2, 3mp2an 426 1 𝐵𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2200  wne 2400   class class class wbr 4082  cr 7994   < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-ltxr 8182
This theorem is referenced by:  ltneii  8239  ine0  8536  fztpval  10275  ene1  12291  3lcm2e6  12677  starvndxnbasendx  13170  starvndxnplusgndx  13171  starvndxnmulrndx  13172  scandxnbasendx  13182  scandxnplusgndx  13183  scandxnmulrndx  13184  vscandxnbasendx  13187  vscandxnplusgndx  13188  vscandxnmulrndx  13189  vscandxnscandx  13190  ipndxnbasendx  13200  ipndxnplusgndx  13201  ipndxnmulrndx  13202  tsetndxnbasendx  13219  tsetndxnplusgndx  13220  tsetndxnmulrndx  13221  tsetndxnstarvndx  13222  slotstnscsi  13223  plendxnbasendx  13233  plendxnplusgndx  13234  plendxnmulrndx  13235  plendxnscandx  13236  plendxnvscandx  13237  dsndxnbasendx  13248  dsndxnplusgndx  13249  dsndxnmulrndx  13250  slotsdnscsi  13251  dsndxntsetndx  13252  unifndxnbasendx  13258  unifndxntsetndx  13259  setsmsdsg  15148  2logb9irr  15639  2logb3irr  15641  2logb9irrap  15645
  Copyright terms: Public domain W3C validator