Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gtneii | GIF version |
Description: 'Less than' implies not equal. See also gtapii 8488 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
ltneii.2 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
gtneii | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | ltneii.2 | . 2 ⊢ 𝐴 < 𝐵 | |
3 | ltne 7941 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2125 ≠ wne 2324 class class class wbr 3961 ℝcr 7710 < clt 7891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-pre-ltirr 7823 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-pnf 7893 df-mnf 7894 df-ltxr 7896 |
This theorem is referenced by: ltneii 7952 ine0 8248 fztpval 9963 ene1 11658 3lcm2e6 12006 setsmsdsg 12827 2logb9irr 13235 2logb3irr 13237 2logb9irrap 13241 |
Copyright terms: Public domain | W3C validator |