ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omctfn GIF version

Theorem omctfn 12660
Description: Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
Hypotheses
Ref Expression
omiunct.cc (𝜑CCHOICE)
omiunct.g ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
omctfn (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
Distinct variable groups:   𝐵,𝑓,𝑔   𝜑,𝑓,𝑥,𝑔
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem omctfn
StepHypRef Expression
1 omiunct.cc . 2 (𝜑CCHOICE)
2 fnmap 6714 . . . . 5 𝑚 Fn (V × V)
3 omiunct.g . . . . . 6 ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
4 omex 4629 . . . . . . . 8 ω ∈ V
5 focdmex 6172 . . . . . . . 8 (ω ∈ V → (𝑔:ω–onto→(𝐵 ⊔ 1o) → (𝐵 ⊔ 1o) ∈ V))
64, 5ax-mp 5 . . . . . . 7 (𝑔:ω–onto→(𝐵 ⊔ 1o) → (𝐵 ⊔ 1o) ∈ V)
76adantl 277 . . . . . 6 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → (𝐵 ⊔ 1o) ∈ V)
83, 7exlimddv 1913 . . . . 5 ((𝜑𝑥 ∈ ω) → (𝐵 ⊔ 1o) ∈ V)
94a1i 9 . . . . 5 ((𝜑𝑥 ∈ ω) → ω ∈ V)
10 fnovex 5955 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ (𝐵 ⊔ 1o) ∈ V ∧ ω ∈ V) → ((𝐵 ⊔ 1o) ↑𝑚 ω) ∈ V)
112, 8, 9, 10mp3an2i 1353 . . . 4 ((𝜑𝑥 ∈ ω) → ((𝐵 ⊔ 1o) ↑𝑚 ω) ∈ V)
12 rabexg 4176 . . . 4 (((𝐵 ⊔ 1o) ↑𝑚 ω) ∈ V → {𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∣ 𝑔:ω–onto→(𝐵 ⊔ 1o)} ∈ V)
1311, 12syl 14 . . 3 ((𝜑𝑥 ∈ ω) → {𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∣ 𝑔:ω–onto→(𝐵 ⊔ 1o)} ∈ V)
1413ralrimiva 2570 . 2 (𝜑 → ∀𝑥 ∈ ω {𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∣ 𝑔:ω–onto→(𝐵 ⊔ 1o)} ∈ V)
154enref 6824 . . 3 ω ≈ ω
1615a1i 9 . 2 (𝜑 → ω ≈ ω)
17 foeq1 5476 . 2 (𝑔 = (𝑓𝑥) → (𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
18 fof 5480 . . . . . . . . . 10 (𝑔:ω–onto→(𝐵 ⊔ 1o) → 𝑔:ω⟶(𝐵 ⊔ 1o))
1918adantl 277 . . . . . . . . 9 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → 𝑔:ω⟶(𝐵 ⊔ 1o))
20 elmapg 6720 . . . . . . . . . 10 (((𝐵 ⊔ 1o) ∈ V ∧ ω ∈ V) → (𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ↔ 𝑔:ω⟶(𝐵 ⊔ 1o)))
217, 4, 20sylancl 413 . . . . . . . . 9 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → (𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ↔ 𝑔:ω⟶(𝐵 ⊔ 1o)))
2219, 21mpbird 167 . . . . . . . 8 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → 𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω))
23 simpr 110 . . . . . . . 8 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → 𝑔:ω–onto→(𝐵 ⊔ 1o))
2422, 23jca 306 . . . . . . 7 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → (𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
2524ex 115 . . . . . 6 ((𝜑𝑥 ∈ ω) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → (𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o))))
2625eximdv 1894 . . . . 5 ((𝜑𝑥 ∈ ω) → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑔(𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o))))
27 df-rex 2481 . . . . 5 (∃𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω)𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ ∃𝑔(𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
2826, 27imbitrrdi 162 . . . 4 ((𝜑𝑥 ∈ ω) → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω)𝑔:ω–onto→(𝐵 ⊔ 1o)))
293, 28mpd 13 . . 3 ((𝜑𝑥 ∈ ω) → ∃𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω)𝑔:ω–onto→(𝐵 ⊔ 1o))
3029ralrimiva 2570 . 2 (𝜑 → ∀𝑥 ∈ ω ∃𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω)𝑔:ω–onto→(𝐵 ⊔ 1o))
311, 14, 16, 17, 30cc4n 7338 1 (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  Vcvv 2763   class class class wbr 4033  ωcom 4626   × cxp 4661   Fn wfn 5253  wf 5254  ontowfo 5256  cfv 5258  (class class class)co 5922  1oc1o 6467  𝑚 cmap 6707  cen 6797  cdju 7103  CCHOICEwacc 7329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-er 6592  df-map 6709  df-en 6800  df-cc 7330
This theorem is referenced by:  omiunct  12661
  Copyright terms: Public domain W3C validator