ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omctfn GIF version

Theorem omctfn 12733
Description: Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
Hypotheses
Ref Expression
omiunct.cc (𝜑CCHOICE)
omiunct.g ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
Assertion
Ref Expression
omctfn (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
Distinct variable groups:   𝐵,𝑓,𝑔   𝜑,𝑓,𝑥,𝑔
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem omctfn
StepHypRef Expression
1 omiunct.cc . 2 (𝜑CCHOICE)
2 fnmap 6732 . . . . 5 𝑚 Fn (V × V)
3 omiunct.g . . . . . 6 ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))
4 omex 4639 . . . . . . . 8 ω ∈ V
5 focdmex 6190 . . . . . . . 8 (ω ∈ V → (𝑔:ω–onto→(𝐵 ⊔ 1o) → (𝐵 ⊔ 1o) ∈ V))
64, 5ax-mp 5 . . . . . . 7 (𝑔:ω–onto→(𝐵 ⊔ 1o) → (𝐵 ⊔ 1o) ∈ V)
76adantl 277 . . . . . 6 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → (𝐵 ⊔ 1o) ∈ V)
83, 7exlimddv 1921 . . . . 5 ((𝜑𝑥 ∈ ω) → (𝐵 ⊔ 1o) ∈ V)
94a1i 9 . . . . 5 ((𝜑𝑥 ∈ ω) → ω ∈ V)
10 fnovex 5967 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ (𝐵 ⊔ 1o) ∈ V ∧ ω ∈ V) → ((𝐵 ⊔ 1o) ↑𝑚 ω) ∈ V)
112, 8, 9, 10mp3an2i 1354 . . . 4 ((𝜑𝑥 ∈ ω) → ((𝐵 ⊔ 1o) ↑𝑚 ω) ∈ V)
12 rabexg 4186 . . . 4 (((𝐵 ⊔ 1o) ↑𝑚 ω) ∈ V → {𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∣ 𝑔:ω–onto→(𝐵 ⊔ 1o)} ∈ V)
1311, 12syl 14 . . 3 ((𝜑𝑥 ∈ ω) → {𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∣ 𝑔:ω–onto→(𝐵 ⊔ 1o)} ∈ V)
1413ralrimiva 2578 . 2 (𝜑 → ∀𝑥 ∈ ω {𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∣ 𝑔:ω–onto→(𝐵 ⊔ 1o)} ∈ V)
154enref 6842 . . 3 ω ≈ ω
1615a1i 9 . 2 (𝜑 → ω ≈ ω)
17 foeq1 5488 . 2 (𝑔 = (𝑓𝑥) → (𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
18 fof 5492 . . . . . . . . . 10 (𝑔:ω–onto→(𝐵 ⊔ 1o) → 𝑔:ω⟶(𝐵 ⊔ 1o))
1918adantl 277 . . . . . . . . 9 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → 𝑔:ω⟶(𝐵 ⊔ 1o))
20 elmapg 6738 . . . . . . . . . 10 (((𝐵 ⊔ 1o) ∈ V ∧ ω ∈ V) → (𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ↔ 𝑔:ω⟶(𝐵 ⊔ 1o)))
217, 4, 20sylancl 413 . . . . . . . . 9 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → (𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ↔ 𝑔:ω⟶(𝐵 ⊔ 1o)))
2219, 21mpbird 167 . . . . . . . 8 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → 𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω))
23 simpr 110 . . . . . . . 8 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → 𝑔:ω–onto→(𝐵 ⊔ 1o))
2422, 23jca 306 . . . . . . 7 (((𝜑𝑥 ∈ ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)) → (𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
2524ex 115 . . . . . 6 ((𝜑𝑥 ∈ ω) → (𝑔:ω–onto→(𝐵 ⊔ 1o) → (𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o))))
2625eximdv 1902 . . . . 5 ((𝜑𝑥 ∈ ω) → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑔(𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o))))
27 df-rex 2489 . . . . 5 (∃𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω)𝑔:ω–onto→(𝐵 ⊔ 1o) ↔ ∃𝑔(𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω) ∧ 𝑔:ω–onto→(𝐵 ⊔ 1o)))
2826, 27imbitrrdi 162 . . . 4 ((𝜑𝑥 ∈ ω) → (∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o) → ∃𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω)𝑔:ω–onto→(𝐵 ⊔ 1o)))
293, 28mpd 13 . . 3 ((𝜑𝑥 ∈ ω) → ∃𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω)𝑔:ω–onto→(𝐵 ⊔ 1o))
3029ralrimiva 2578 . 2 (𝜑 → ∀𝑥 ∈ ω ∃𝑔 ∈ ((𝐵 ⊔ 1o) ↑𝑚 ω)𝑔:ω–onto→(𝐵 ⊔ 1o))
311, 14, 16, 17, 30cc4n 7365 1 (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1514  wcel 2175  wral 2483  wrex 2484  {crab 2487  Vcvv 2771   class class class wbr 4043  ωcom 4636   × cxp 4671   Fn wfn 5263  wf 5264  ontowfo 5266  cfv 5268  (class class class)co 5934  1oc1o 6485  𝑚 cmap 6725  cen 6815  cdju 7121  CCHOICEwacc 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-er 6610  df-map 6727  df-en 6818  df-cc 7357
This theorem is referenced by:  omiunct  12734
  Copyright terms: Public domain W3C validator