ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr0g GIF version

Theorem oppr0g 13577
Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
oppr0.2 0 = (0g𝑅)
Assertion
Ref Expression
oppr0g (𝑅𝑉0 = (0g𝑂))

Proof of Theorem oppr0g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
2 eqid 2193 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 13571 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
43eleq2d 2263 . . . 4 (𝑅𝑉 → (𝑦 ∈ (Base‘𝑅) ↔ 𝑦 ∈ (Base‘𝑂)))
5 eqid 2193 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
61, 5oppraddg 13572 . . . . . . . 8 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
76oveqd 5935 . . . . . . 7 (𝑅𝑉 → (𝑦(+g𝑅)𝑥) = (𝑦(+g𝑂)𝑥))
87eqeq1d 2202 . . . . . 6 (𝑅𝑉 → ((𝑦(+g𝑅)𝑥) = 𝑥 ↔ (𝑦(+g𝑂)𝑥) = 𝑥))
96oveqd 5935 . . . . . . 7 (𝑅𝑉 → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
109eqeq1d 2202 . . . . . 6 (𝑅𝑉 → ((𝑥(+g𝑅)𝑦) = 𝑥 ↔ (𝑥(+g𝑂)𝑦) = 𝑥))
118, 10anbi12d 473 . . . . 5 (𝑅𝑉 → (((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥) ↔ ((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥)))
123, 11raleqbidv 2706 . . . 4 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥)))
134, 12anbi12d 473 . . 3 (𝑅𝑉 → ((𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥)) ↔ (𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
1413iotabidv 5237 . 2 (𝑅𝑉 → (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥))) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
15 oppr0.2 . . 3 0 = (0g𝑅)
162, 5, 15grpidvalg 12956 . 2 (𝑅𝑉0 = (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥))))
171opprex 13569 . . 3 (𝑅𝑉𝑂 ∈ V)
18 eqid 2193 . . . 4 (Base‘𝑂) = (Base‘𝑂)
19 eqid 2193 . . . 4 (+g𝑂) = (+g𝑂)
20 eqid 2193 . . . 4 (0g𝑂) = (0g𝑂)
2118, 19, 20grpidvalg 12956 . . 3 (𝑂 ∈ V → (0g𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
2217, 21syl 14 . 2 (𝑅𝑉 → (0g𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
2314, 16, 223eqtr4d 2236 1 (𝑅𝑉0 = (0g𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cio 5213  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  opprcoppr 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-oppr 13564
This theorem is referenced by:  opprnegg  13579  opprnzrbg  13681  opprdomnbg  13770  ridl0  14006  2idlcpblrng  14019
  Copyright terms: Public domain W3C validator