| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oppr0g | GIF version | ||
| Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| oppr0.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| oppr0g | ⊢ (𝑅 ∈ 𝑉 → 0 = (0g‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
| 2 | eqid 2207 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | opprbasg 13952 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
| 4 | 3 | eleq2d 2277 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑦 ∈ (Base‘𝑅) ↔ 𝑦 ∈ (Base‘𝑂))) |
| 5 | eqid 2207 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | 1, 5 | oppraddg 13953 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) |
| 7 | 6 | oveqd 5984 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑦(+g‘𝑅)𝑥) = (𝑦(+g‘𝑂)𝑥)) |
| 8 | 7 | eqeq1d 2216 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑦(+g‘𝑅)𝑥) = 𝑥 ↔ (𝑦(+g‘𝑂)𝑥) = 𝑥)) |
| 9 | 6 | oveqd 5984 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
| 10 | 9 | eqeq1d 2216 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑥(+g‘𝑅)𝑦) = 𝑥 ↔ (𝑥(+g‘𝑂)𝑦) = 𝑥)) |
| 11 | 8, 10 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥) ↔ ((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥))) |
| 12 | 3, 11 | raleqbidv 2721 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (∀𝑥 ∈ (Base‘𝑅)((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥))) |
| 13 | 4, 12 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥)) ↔ (𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥)))) |
| 14 | 13 | iotabidv 5273 | . 2 ⊢ (𝑅 ∈ 𝑉 → (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥))) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥)))) |
| 15 | oppr0.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 16 | 2, 5, 15 | grpidvalg 13320 | . 2 ⊢ (𝑅 ∈ 𝑉 → 0 = (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥)))) |
| 17 | 1 | opprex 13950 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| 18 | eqid 2207 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 19 | eqid 2207 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 20 | eqid 2207 | . . . 4 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
| 21 | 18, 19, 20 | grpidvalg 13320 | . . 3 ⊢ (𝑂 ∈ V → (0g‘𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥)))) |
| 22 | 17, 21 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (0g‘𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥)))) |
| 23 | 14, 16, 22 | 3eqtr4d 2250 | 1 ⊢ (𝑅 ∈ 𝑉 → 0 = (0g‘𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ∀wral 2486 Vcvv 2776 ℩cio 5249 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 +gcplusg 13024 0gc0g 13203 opprcoppr 13944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-tpos 6354 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-0g 13205 df-oppr 13945 |
| This theorem is referenced by: opprnegg 13960 opprnzrbg 14062 opprdomnbg 14151 ridl0 14387 2idlcpblrng 14400 |
| Copyright terms: Public domain | W3C validator |