ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr0g GIF version

Theorem oppr0g 14044
Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
oppr0.2 0 = (0g𝑅)
Assertion
Ref Expression
oppr0g (𝑅𝑉0 = (0g𝑂))

Proof of Theorem oppr0g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
2 eqid 2229 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 14038 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
43eleq2d 2299 . . . 4 (𝑅𝑉 → (𝑦 ∈ (Base‘𝑅) ↔ 𝑦 ∈ (Base‘𝑂)))
5 eqid 2229 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
61, 5oppraddg 14039 . . . . . . . 8 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
76oveqd 6018 . . . . . . 7 (𝑅𝑉 → (𝑦(+g𝑅)𝑥) = (𝑦(+g𝑂)𝑥))
87eqeq1d 2238 . . . . . 6 (𝑅𝑉 → ((𝑦(+g𝑅)𝑥) = 𝑥 ↔ (𝑦(+g𝑂)𝑥) = 𝑥))
96oveqd 6018 . . . . . . 7 (𝑅𝑉 → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
109eqeq1d 2238 . . . . . 6 (𝑅𝑉 → ((𝑥(+g𝑅)𝑦) = 𝑥 ↔ (𝑥(+g𝑂)𝑦) = 𝑥))
118, 10anbi12d 473 . . . . 5 (𝑅𝑉 → (((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥) ↔ ((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥)))
123, 11raleqbidv 2744 . . . 4 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥)))
134, 12anbi12d 473 . . 3 (𝑅𝑉 → ((𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥)) ↔ (𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
1413iotabidv 5301 . 2 (𝑅𝑉 → (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥))) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
15 oppr0.2 . . 3 0 = (0g𝑅)
162, 5, 15grpidvalg 13406 . 2 (𝑅𝑉0 = (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥))))
171opprex 14036 . . 3 (𝑅𝑉𝑂 ∈ V)
18 eqid 2229 . . . 4 (Base‘𝑂) = (Base‘𝑂)
19 eqid 2229 . . . 4 (+g𝑂) = (+g𝑂)
20 eqid 2229 . . . 4 (0g𝑂) = (0g𝑂)
2118, 19, 20grpidvalg 13406 . . 3 (𝑂 ∈ V → (0g𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
2217, 21syl 14 . 2 (𝑅𝑉 → (0g𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
2314, 16, 223eqtr4d 2272 1 (𝑅𝑉0 = (0g𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  cio 5276  cfv 5318  (class class class)co 6001  Basecbs 13032  +gcplusg 13110  0gc0g 13289  opprcoppr 14030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-oppr 14031
This theorem is referenced by:  opprnegg  14046  opprnzrbg  14149  opprdomnbg  14238  ridl0  14474  2idlcpblrng  14487
  Copyright terms: Public domain W3C validator