| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oppr0g | GIF version | ||
| Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| oppr0.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| oppr0g | ⊢ (𝑅 ∈ 𝑉 → 0 = (0g‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
| 2 | eqid 2229 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | opprbasg 14038 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
| 4 | 3 | eleq2d 2299 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑦 ∈ (Base‘𝑅) ↔ 𝑦 ∈ (Base‘𝑂))) |
| 5 | eqid 2229 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | 1, 5 | oppraddg 14039 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) |
| 7 | 6 | oveqd 6018 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑦(+g‘𝑅)𝑥) = (𝑦(+g‘𝑂)𝑥)) |
| 8 | 7 | eqeq1d 2238 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑦(+g‘𝑅)𝑥) = 𝑥 ↔ (𝑦(+g‘𝑂)𝑥) = 𝑥)) |
| 9 | 6 | oveqd 6018 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
| 10 | 9 | eqeq1d 2238 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑥(+g‘𝑅)𝑦) = 𝑥 ↔ (𝑥(+g‘𝑂)𝑦) = 𝑥)) |
| 11 | 8, 10 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥) ↔ ((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥))) |
| 12 | 3, 11 | raleqbidv 2744 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (∀𝑥 ∈ (Base‘𝑅)((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥))) |
| 13 | 4, 12 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥)) ↔ (𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥)))) |
| 14 | 13 | iotabidv 5301 | . 2 ⊢ (𝑅 ∈ 𝑉 → (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥))) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥)))) |
| 15 | oppr0.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 16 | 2, 5, 15 | grpidvalg 13406 | . 2 ⊢ (𝑅 ∈ 𝑉 → 0 = (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g‘𝑅)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑅)𝑦) = 𝑥)))) |
| 17 | 1 | opprex 14036 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| 18 | eqid 2229 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 19 | eqid 2229 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 20 | eqid 2229 | . . . 4 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
| 21 | 18, 19, 20 | grpidvalg 13406 | . . 3 ⊢ (𝑂 ∈ V → (0g‘𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥)))) |
| 22 | 17, 21 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (0g‘𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g‘𝑂)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑂)𝑦) = 𝑥)))) |
| 23 | 14, 16, 22 | 3eqtr4d 2272 | 1 ⊢ (𝑅 ∈ 𝑉 → 0 = (0g‘𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ℩cio 5276 ‘cfv 5318 (class class class)co 6001 Basecbs 13032 +gcplusg 13110 0gc0g 13289 opprcoppr 14030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-tpos 6391 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-plusg 13123 df-mulr 13124 df-0g 13291 df-oppr 14031 |
| This theorem is referenced by: opprnegg 14046 opprnzrbg 14149 opprdomnbg 14238 ridl0 14474 2idlcpblrng 14487 |
| Copyright terms: Public domain | W3C validator |