ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oppr0g GIF version

Theorem oppr0g 13843
Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
oppr0.2 0 = (0g𝑅)
Assertion
Ref Expression
oppr0g (𝑅𝑉0 = (0g𝑂))

Proof of Theorem oppr0g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6 𝑂 = (oppr𝑅)
2 eqid 2205 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 13837 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
43eleq2d 2275 . . . 4 (𝑅𝑉 → (𝑦 ∈ (Base‘𝑅) ↔ 𝑦 ∈ (Base‘𝑂)))
5 eqid 2205 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
61, 5oppraddg 13838 . . . . . . . 8 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
76oveqd 5961 . . . . . . 7 (𝑅𝑉 → (𝑦(+g𝑅)𝑥) = (𝑦(+g𝑂)𝑥))
87eqeq1d 2214 . . . . . 6 (𝑅𝑉 → ((𝑦(+g𝑅)𝑥) = 𝑥 ↔ (𝑦(+g𝑂)𝑥) = 𝑥))
96oveqd 5961 . . . . . . 7 (𝑅𝑉 → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
109eqeq1d 2214 . . . . . 6 (𝑅𝑉 → ((𝑥(+g𝑅)𝑦) = 𝑥 ↔ (𝑥(+g𝑂)𝑦) = 𝑥))
118, 10anbi12d 473 . . . . 5 (𝑅𝑉 → (((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥) ↔ ((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥)))
123, 11raleqbidv 2718 . . . 4 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥)))
134, 12anbi12d 473 . . 3 (𝑅𝑉 → ((𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥)) ↔ (𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
1413iotabidv 5254 . 2 (𝑅𝑉 → (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥))) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
15 oppr0.2 . . 3 0 = (0g𝑅)
162, 5, 15grpidvalg 13205 . 2 (𝑅𝑉0 = (℩𝑦(𝑦 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑦(+g𝑅)𝑥) = 𝑥 ∧ (𝑥(+g𝑅)𝑦) = 𝑥))))
171opprex 13835 . . 3 (𝑅𝑉𝑂 ∈ V)
18 eqid 2205 . . . 4 (Base‘𝑂) = (Base‘𝑂)
19 eqid 2205 . . . 4 (+g𝑂) = (+g𝑂)
20 eqid 2205 . . . 4 (0g𝑂) = (0g𝑂)
2118, 19, 20grpidvalg 13205 . . 3 (𝑂 ∈ V → (0g𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
2217, 21syl 14 . 2 (𝑅𝑉 → (0g𝑂) = (℩𝑦(𝑦 ∈ (Base‘𝑂) ∧ ∀𝑥 ∈ (Base‘𝑂)((𝑦(+g𝑂)𝑥) = 𝑥 ∧ (𝑥(+g𝑂)𝑦) = 𝑥))))
2314, 16, 223eqtr4d 2248 1 (𝑅𝑉0 = (0g𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  cio 5230  cfv 5271  (class class class)co 5944  Basecbs 12832  +gcplusg 12909  0gc0g 13088  opprcoppr 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-oppr 13830
This theorem is referenced by:  opprnegg  13845  opprnzrbg  13947  opprdomnbg  14036  ridl0  14272  2idlcpblrng  14285
  Copyright terms: Public domain W3C validator