ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfur2g GIF version

Theorem dfur2g 12968
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
dfur2.b 𝐵 = (Base‘𝑅)
dfur2.t · = (.r𝑅)
dfur2.u 1 = (1r𝑅)
Assertion
Ref Expression
dfur2g (𝑅𝑉1 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))))
Distinct variable groups:   𝑥,𝑒,𝐵   𝑅,𝑒,𝑥   𝑒,𝑉,𝑥
Allowed substitution hints:   · (𝑥,𝑒)   1 (𝑥,𝑒)

Proof of Theorem dfur2g
StepHypRef Expression
1 fnmgp 12956 . . . 4 mulGrp Fn V
2 elex 2748 . . . 4 (𝑅𝑉𝑅 ∈ V)
3 funfvex 5528 . . . . 5 ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V)
43funfni 5312 . . . 4 ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V)
51, 2, 4sylancr 414 . . 3 (𝑅𝑉 → (mulGrp‘𝑅) ∈ V)
6 eqid 2177 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
7 eqid 2177 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
8 eqid 2177 . . . 4 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
96, 7, 8grpidvalg 12681 . . 3 ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))))
105, 9syl 14 . 2 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))))
11 eqid 2177 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
12 dfur2.u . . 3 1 = (1r𝑅)
1311, 12ringidvalg 12967 . 2 (𝑅𝑉1 = (0g‘(mulGrp‘𝑅)))
14 dfur2.b . . . . . 6 𝐵 = (Base‘𝑅)
1511, 14mgpbasg 12960 . . . . 5 (𝑅𝑉𝐵 = (Base‘(mulGrp‘𝑅)))
1615eleq2d 2247 . . . 4 (𝑅𝑉 → (𝑒𝐵𝑒 ∈ (Base‘(mulGrp‘𝑅))))
17 dfur2.t . . . . . . . . 9 · = (.r𝑅)
1811, 17mgpplusgg 12958 . . . . . . . 8 (𝑅𝑉· = (+g‘(mulGrp‘𝑅)))
1918oveqd 5886 . . . . . . 7 (𝑅𝑉 → (𝑒 · 𝑥) = (𝑒(+g‘(mulGrp‘𝑅))𝑥))
2019eqeq1d 2186 . . . . . 6 (𝑅𝑉 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
2118oveqd 5886 . . . . . . 7 (𝑅𝑉 → (𝑥 · 𝑒) = (𝑥(+g‘(mulGrp‘𝑅))𝑒))
2221eqeq1d 2186 . . . . . 6 (𝑅𝑉 → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))
2320, 22anbi12d 473 . . . . 5 (𝑅𝑉 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))
2415, 23raleqbidv 2684 . . . 4 (𝑅𝑉 → (∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))
2516, 24anbi12d 473 . . 3 (𝑅𝑉 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))))
2625iotabidv 5195 . 2 (𝑅𝑉 → (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))))
2710, 13, 263eqtr4d 2220 1 (𝑅𝑉1 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  cio 5172   Fn wfn 5207  cfv 5212  (class class class)co 5869  Basecbs 12442  +gcplusg 12515  .rcmulr 12516  0gc0g 12650  mulGrpcmgp 12954  1rcur 12965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7890  ax-resscn 7891  ax-1cn 7892  ax-1re 7893  ax-icn 7894  ax-addcl 7895  ax-addrcl 7896  ax-mulcl 7897  ax-addcom 7899  ax-addass 7901  ax-i2m1 7904  ax-0lt1 7905  ax-0id 7907  ax-rnegex 7908  ax-pre-ltirr 7911  ax-pre-ltadd 7915
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7981  df-mnf 7982  df-ltxr 7984  df-inn 8906  df-2 8964  df-3 8965  df-ndx 12445  df-slot 12446  df-base 12448  df-sets 12449  df-plusg 12528  df-mulr 12529  df-0g 12652  df-mgp 12955  df-ur 12966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator