![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfur2g | GIF version |
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
dfur2.b | ⊢ 𝐵 = (Base‘𝑅) |
dfur2.t | ⊢ · = (.r‘𝑅) |
dfur2.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
dfur2g | ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmgp 13418 | . . . 4 ⊢ mulGrp Fn V | |
2 | elex 2771 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | funfvex 5571 | . . . . 5 ⊢ ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V) | |
4 | 3 | funfni 5354 | . . . 4 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V) |
5 | 1, 2, 4 | sylancr 414 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) ∈ V) |
6 | eqid 2193 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
7 | eqid 2193 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
8 | eqid 2193 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
9 | 6, 7, 8 | grpidvalg 12956 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
10 | 5, 9 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
11 | eqid 2193 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
12 | dfur2.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
13 | 11, 12 | ringidvalg 13457 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘(mulGrp‘𝑅))) |
14 | dfur2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
15 | 11, 14 | mgpbasg 13422 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
16 | 15 | eleq2d 2263 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑒 ∈ 𝐵 ↔ 𝑒 ∈ (Base‘(mulGrp‘𝑅)))) |
17 | dfur2.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
18 | 11, 17 | mgpplusgg 13420 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(mulGrp‘𝑅))) |
19 | 18 | oveqd 5935 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑒 · 𝑥) = (𝑒(+g‘(mulGrp‘𝑅))𝑥)) |
20 | 19 | eqeq1d 2202 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥)) |
21 | 18 | oveqd 5935 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑥 · 𝑒) = (𝑥(+g‘(mulGrp‘𝑅))𝑒)) |
22 | 21 | eqeq1d 2202 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)) |
23 | 20, 22 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
24 | 15, 23 | raleqbidv 2706 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
25 | 16, 24 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
26 | 25 | iotabidv 5237 | . 2 ⊢ (𝑅 ∈ 𝑉 → (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
27 | 10, 13, 26 | 3eqtr4d 2236 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ℩cio 5213 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 0gc0g 12867 mulGrpcmgp 13416 1rcur 13455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgp 13417 df-ur 13456 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |