Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfur2g | GIF version |
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
dfur2.b | ⊢ 𝐵 = (Base‘𝑅) |
dfur2.t | ⊢ · = (.r‘𝑅) |
dfur2.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
dfur2g | ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmgp 12927 | . . . 4 ⊢ mulGrp Fn V | |
2 | elex 2746 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | funfvex 5524 | . . . . 5 ⊢ ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V) | |
4 | 3 | funfni 5308 | . . . 4 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V) |
5 | 1, 2, 4 | sylancr 414 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) ∈ V) |
6 | eqid 2175 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
7 | eqid 2175 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
8 | eqid 2175 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
9 | 6, 7, 8 | grpidvalg 12657 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
10 | 5, 9 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
11 | eqid 2175 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
12 | dfur2.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
13 | 11, 12 | ringidvalg 12937 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘(mulGrp‘𝑅))) |
14 | dfur2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
15 | 11, 14 | mgpbasg 12930 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
16 | 15 | eleq2d 2245 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑒 ∈ 𝐵 ↔ 𝑒 ∈ (Base‘(mulGrp‘𝑅)))) |
17 | dfur2.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
18 | 11, 17 | mgpplusgg 12929 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(mulGrp‘𝑅))) |
19 | 18 | oveqd 5882 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑒 · 𝑥) = (𝑒(+g‘(mulGrp‘𝑅))𝑥)) |
20 | 19 | eqeq1d 2184 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥)) |
21 | 18 | oveqd 5882 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑥 · 𝑒) = (𝑥(+g‘(mulGrp‘𝑅))𝑒)) |
22 | 21 | eqeq1d 2184 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)) |
23 | 20, 22 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
24 | 15, 23 | raleqbidv 2682 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
25 | 16, 24 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
26 | 25 | iotabidv 5191 | . 2 ⊢ (𝑅 ∈ 𝑉 → (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
27 | 10, 13, 26 | 3eqtr4d 2218 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ∀wral 2453 Vcvv 2735 ℩cio 5168 Fn wfn 5203 ‘cfv 5208 (class class class)co 5865 Basecbs 12428 +gcplusg 12492 .rcmulr 12493 0gc0g 12626 mulGrpcmgp 12925 1rcur 12935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgp 12926 df-ur 12936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |