ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfur2g GIF version

Theorem dfur2g 13774
Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
dfur2.b 𝐵 = (Base‘𝑅)
dfur2.t · = (.r𝑅)
dfur2.u 1 = (1r𝑅)
Assertion
Ref Expression
dfur2g (𝑅𝑉1 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))))
Distinct variable groups:   𝑥,𝑒,𝐵   𝑅,𝑒,𝑥   𝑒,𝑉,𝑥
Allowed substitution hints:   · (𝑥,𝑒)   1 (𝑥,𝑒)

Proof of Theorem dfur2g
StepHypRef Expression
1 fnmgp 13734 . . . 4 mulGrp Fn V
2 elex 2785 . . . 4 (𝑅𝑉𝑅 ∈ V)
3 funfvex 5603 . . . . 5 ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V)
43funfni 5382 . . . 4 ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V)
51, 2, 4sylancr 414 . . 3 (𝑅𝑉 → (mulGrp‘𝑅) ∈ V)
6 eqid 2206 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
7 eqid 2206 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
8 eqid 2206 . . . 4 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
96, 7, 8grpidvalg 13255 . . 3 ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))))
105, 9syl 14 . 2 (𝑅𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))))
11 eqid 2206 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
12 dfur2.u . . 3 1 = (1r𝑅)
1311, 12ringidvalg 13773 . 2 (𝑅𝑉1 = (0g‘(mulGrp‘𝑅)))
14 dfur2.b . . . . . 6 𝐵 = (Base‘𝑅)
1511, 14mgpbasg 13738 . . . . 5 (𝑅𝑉𝐵 = (Base‘(mulGrp‘𝑅)))
1615eleq2d 2276 . . . 4 (𝑅𝑉 → (𝑒𝐵𝑒 ∈ (Base‘(mulGrp‘𝑅))))
17 dfur2.t . . . . . . . . 9 · = (.r𝑅)
1811, 17mgpplusgg 13736 . . . . . . . 8 (𝑅𝑉· = (+g‘(mulGrp‘𝑅)))
1918oveqd 5971 . . . . . . 7 (𝑅𝑉 → (𝑒 · 𝑥) = (𝑒(+g‘(mulGrp‘𝑅))𝑥))
2019eqeq1d 2215 . . . . . 6 (𝑅𝑉 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥))
2118oveqd 5971 . . . . . . 7 (𝑅𝑉 → (𝑥 · 𝑒) = (𝑥(+g‘(mulGrp‘𝑅))𝑒))
2221eqeq1d 2215 . . . . . 6 (𝑅𝑉 → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))
2320, 22anbi12d 473 . . . . 5 (𝑅𝑉 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))
2415, 23raleqbidv 2719 . . . 4 (𝑅𝑉 → (∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))
2516, 24anbi12d 473 . . 3 (𝑅𝑉 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))))
2625iotabidv 5260 . 2 (𝑅𝑉 → (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))))
2710, 13, 263eqtr4d 2249 1 (𝑅𝑉1 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  cio 5236   Fn wfn 5272  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  .rcmulr 12960  0gc0g 13138  mulGrpcmgp 13732  1rcur 13771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgp 13733  df-ur 13772
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator