| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfur2g | GIF version | ||
| Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| dfur2.b | ⊢ 𝐵 = (Base‘𝑅) |
| dfur2.t | ⊢ · = (.r‘𝑅) |
| dfur2.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| dfur2g | ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 13478 | . . . 4 ⊢ mulGrp Fn V | |
| 2 | elex 2774 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 3 | funfvex 5575 | . . . . 5 ⊢ ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V) | |
| 4 | 3 | funfni 5358 | . . . 4 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V) |
| 5 | 1, 2, 4 | sylancr 414 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) ∈ V) |
| 6 | eqid 2196 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 7 | eqid 2196 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 8 | eqid 2196 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 9 | 6, 7, 8 | grpidvalg 13016 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 10 | 5, 9 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 11 | eqid 2196 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 12 | dfur2.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 13 | 11, 12 | ringidvalg 13517 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘(mulGrp‘𝑅))) |
| 14 | dfur2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 15 | 11, 14 | mgpbasg 13482 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 16 | 15 | eleq2d 2266 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑒 ∈ 𝐵 ↔ 𝑒 ∈ (Base‘(mulGrp‘𝑅)))) |
| 17 | dfur2.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
| 18 | 11, 17 | mgpplusgg 13480 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(mulGrp‘𝑅))) |
| 19 | 18 | oveqd 5939 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑒 · 𝑥) = (𝑒(+g‘(mulGrp‘𝑅))𝑥)) |
| 20 | 19 | eqeq1d 2205 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥)) |
| 21 | 18 | oveqd 5939 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑥 · 𝑒) = (𝑥(+g‘(mulGrp‘𝑅))𝑒)) |
| 22 | 21 | eqeq1d 2205 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)) |
| 23 | 20, 22 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
| 24 | 15, 23 | raleqbidv 2709 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
| 25 | 16, 24 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 26 | 25 | iotabidv 5241 | . 2 ⊢ (𝑅 ∈ 𝑉 → (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 27 | 10, 13, 26 | 3eqtr4d 2239 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ℩cio 5217 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 .rcmulr 12756 0gc0g 12927 mulGrpcmgp 13476 1rcur 13515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgp 13477 df-ur 13516 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |