| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfur2g | GIF version | ||
| Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| dfur2.b | ⊢ 𝐵 = (Base‘𝑅) |
| dfur2.t | ⊢ · = (.r‘𝑅) |
| dfur2.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| dfur2g | ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 13734 | . . . 4 ⊢ mulGrp Fn V | |
| 2 | elex 2785 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 3 | funfvex 5603 | . . . . 5 ⊢ ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V) | |
| 4 | 3 | funfni 5382 | . . . 4 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V) |
| 5 | 1, 2, 4 | sylancr 414 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) ∈ V) |
| 6 | eqid 2206 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 7 | eqid 2206 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 8 | eqid 2206 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 9 | 6, 7, 8 | grpidvalg 13255 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 10 | 5, 9 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 11 | eqid 2206 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 12 | dfur2.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 13 | 11, 12 | ringidvalg 13773 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘(mulGrp‘𝑅))) |
| 14 | dfur2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 15 | 11, 14 | mgpbasg 13738 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 16 | 15 | eleq2d 2276 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑒 ∈ 𝐵 ↔ 𝑒 ∈ (Base‘(mulGrp‘𝑅)))) |
| 17 | dfur2.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
| 18 | 11, 17 | mgpplusgg 13736 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(mulGrp‘𝑅))) |
| 19 | 18 | oveqd 5971 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑒 · 𝑥) = (𝑒(+g‘(mulGrp‘𝑅))𝑥)) |
| 20 | 19 | eqeq1d 2215 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥)) |
| 21 | 18 | oveqd 5971 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑥 · 𝑒) = (𝑥(+g‘(mulGrp‘𝑅))𝑒)) |
| 22 | 21 | eqeq1d 2215 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)) |
| 23 | 20, 22 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
| 24 | 15, 23 | raleqbidv 2719 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
| 25 | 16, 24 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 26 | 25 | iotabidv 5260 | . 2 ⊢ (𝑅 ∈ 𝑉 → (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 27 | 10, 13, 26 | 3eqtr4d 2249 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ℩cio 5236 Fn wfn 5272 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 +gcplusg 12959 .rcmulr 12960 0gc0g 13138 mulGrpcmgp 13732 1rcur 13771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-plusg 12972 df-mulr 12973 df-0g 13140 df-mgp 13733 df-ur 13772 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |