| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfur2g | GIF version | ||
| Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| dfur2.b | ⊢ 𝐵 = (Base‘𝑅) |
| dfur2.t | ⊢ · = (.r‘𝑅) |
| dfur2.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| dfur2g | ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 13871 | . . . 4 ⊢ mulGrp Fn V | |
| 2 | elex 2811 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 3 | funfvex 5640 | . . . . 5 ⊢ ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V) | |
| 4 | 3 | funfni 5419 | . . . 4 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V) |
| 5 | 1, 2, 4 | sylancr 414 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) ∈ V) |
| 6 | eqid 2229 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 7 | eqid 2229 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 8 | eqid 2229 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 9 | 6, 7, 8 | grpidvalg 13392 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ V → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 10 | 5, 9 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (0g‘(mulGrp‘𝑅)) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 11 | eqid 2229 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 12 | dfur2.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 13 | 11, 12 | ringidvalg 13910 | . 2 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘(mulGrp‘𝑅))) |
| 14 | dfur2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 15 | 11, 14 | mgpbasg 13875 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 16 | 15 | eleq2d 2299 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑒 ∈ 𝐵 ↔ 𝑒 ∈ (Base‘(mulGrp‘𝑅)))) |
| 17 | dfur2.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
| 18 | 11, 17 | mgpplusgg 13873 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝑉 → · = (+g‘(mulGrp‘𝑅))) |
| 19 | 18 | oveqd 6011 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑒 · 𝑥) = (𝑒(+g‘(mulGrp‘𝑅))𝑥)) |
| 20 | 19 | eqeq1d 2238 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥)) |
| 21 | 18 | oveqd 6011 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑉 → (𝑥 · 𝑒) = (𝑥(+g‘(mulGrp‘𝑅))𝑒)) |
| 22 | 21 | eqeq1d 2238 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)) |
| 23 | 20, 22 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
| 24 | 15, 23 | raleqbidv 2744 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥))) |
| 25 | 16, 24 | anbi12d 473 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 26 | 25 | iotabidv 5297 | . 2 ⊢ (𝑅 ∈ 𝑉 → (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘(mulGrp‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))((𝑒(+g‘(mulGrp‘𝑅))𝑥) = 𝑥 ∧ (𝑥(+g‘(mulGrp‘𝑅))𝑒) = 𝑥)))) |
| 27 | 10, 13, 26 | 3eqtr4d 2272 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ℩cio 5272 Fn wfn 5309 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 .rcmulr 13097 0gc0g 13275 mulGrpcmgp 13869 1rcur 13908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-plusg 13109 df-mulr 13110 df-0g 13277 df-mgp 13870 df-ur 13909 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |