Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltaddnegr | GIF version |
Description: Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021.) |
Ref | Expression |
---|---|
ltaddnegr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐴 + 𝐵) < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltaddneg 8316 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) | |
2 | recn 7880 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
3 | recn 7880 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
4 | addcom 8029 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) | |
5 | 2, 3, 4 | syl2anr 288 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
6 | 5 | breq1d 3989 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝐴) < 𝐵 ↔ (𝐴 + 𝐵) < 𝐵)) |
7 | 1, 6 | bitrd 187 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐴 + 𝐵) < 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1342 ∈ wcel 2135 class class class wbr 3979 (class class class)co 5839 ℂcc 7745 ℝcr 7746 0cc0 7747 + caddc 7750 < clt 7927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-cnex 7838 ax-resscn 7839 ax-1cn 7840 ax-1re 7841 ax-icn 7842 ax-addcl 7843 ax-addrcl 7844 ax-mulcl 7845 ax-addcom 7847 ax-addass 7849 ax-i2m1 7852 ax-0id 7855 ax-rnegex 7856 ax-pre-ltadd 7863 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2726 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-opab 4041 df-xp 4607 df-iota 5150 df-fv 5193 df-ov 5842 df-pnf 7929 df-mnf 7930 df-ltxr 7932 |
This theorem is referenced by: modfzo0difsn 10324 apdifflemf 13818 |
Copyright terms: Public domain | W3C validator |