![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difgtsumgt | GIF version |
Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.) |
Ref | Expression |
---|---|
difgtsumgt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7946 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | nn0cn 9188 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ) | |
3 | 1, 2 | anim12i 338 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
4 | 3 | 3adant3 1017 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
5 | negsub 8207 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
7 | 6 | eqcomd 2183 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 − 𝐵) = (𝐴 + -𝐵)) |
8 | 7 | breq2d 4017 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) ↔ 𝐶 < (𝐴 + -𝐵))) |
9 | simp3 999 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
10 | simp1 997 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) | |
11 | nn0re 9187 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ) | |
12 | 11 | renegcld 8339 | . . . . . 6 ⊢ (𝐵 ∈ ℕ0 → -𝐵 ∈ ℝ) |
13 | 12 | 3ad2ant2 1019 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → -𝐵 ∈ ℝ) |
14 | 10, 13 | readdcld 7989 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) |
15 | 11 | 3ad2ant2 1019 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) |
16 | 10, 15 | readdcld 7989 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
17 | 9, 14, 16 | 3jca 1177 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ∧ (𝐴 + -𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ)) |
18 | nn0negleid 9323 | . . . . 5 ⊢ (𝐵 ∈ ℕ0 → -𝐵 ≤ 𝐵) | |
19 | 18 | 3ad2ant2 1019 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → -𝐵 ≤ 𝐵) |
20 | 13, 15, 10, 19 | leadd2dd 8519 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐴 + -𝐵) ≤ (𝐴 + 𝐵)) |
21 | 17, 20 | lelttrdi 8385 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 + -𝐵) → 𝐶 < (𝐴 + 𝐵))) |
22 | 8, 21 | sylbid 150 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℂcc 7811 ℝcr 7812 + caddc 7816 < clt 7994 ≤ cle 7995 − cmin 8130 -cneg 8131 ℕ0cn0 9178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 |
This theorem is referenced by: difsqpwdvds 12339 |
Copyright terms: Public domain | W3C validator |