| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leidd | GIF version | ||
| Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| leidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | leid 8238 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4083 ℝcr 8006 ≤ cle 8190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-pre-ltirr 8119 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 |
| This theorem is referenced by: zextle 9546 uzind 9566 uzid 9744 z2ge 10030 nn0fz0 10323 fvinim0ffz 10455 flid 10512 modqabs2 10588 monoord 10715 leexp2r 10823 facwordi 10970 faclbnd6 10974 pfxsuffeqwrdeq 11238 sqrtgt0 11553 abs00ap 11581 isumlessdc 12015 cvgratnnlemnexp 12043 cvgratnnlemmn 12044 eirraplem 12296 nn0seqcvgd 12571 pcidlem 12854 pc2dvds 12861 pcprmpw2 12864 pcmpt 12874 trilpolemclim 16434 trilpolemisumle 16436 trilpolemeq1 16438 |
| Copyright terms: Public domain | W3C validator |