| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leidd | GIF version | ||
| Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| leidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | leid 8198 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 class class class wbr 4062 ℝcr 7966 ≤ cle 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-pre-ltirr 8079 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-cnv 4704 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 |
| This theorem is referenced by: zextle 9506 uzind 9526 uzid 9704 z2ge 9990 nn0fz0 10283 fvinim0ffz 10414 flid 10471 modqabs2 10547 monoord 10674 leexp2r 10782 facwordi 10929 faclbnd6 10933 pfxsuffeqwrdeq 11196 sqrtgt0 11511 abs00ap 11539 isumlessdc 11973 cvgratnnlemnexp 12001 cvgratnnlemmn 12002 eirraplem 12254 nn0seqcvgd 12529 pcidlem 12812 pc2dvds 12819 pcprmpw2 12822 pcmpt 12832 trilpolemclim 16315 trilpolemisumle 16317 trilpolemeq1 16319 |
| Copyright terms: Public domain | W3C validator |