ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leidd GIF version

Theorem leidd 8594
Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
leidd (𝜑𝐴𝐴)

Proof of Theorem leidd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 leid 8163 . 2 (𝐴 ∈ ℝ → 𝐴𝐴)
31, 2syl 14 1 (𝜑𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177   class class class wbr 4047  cr 7931  cle 8115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-pre-ltirr 8044
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-cnv 4687  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120
This theorem is referenced by:  zextle  9471  uzind  9491  uzid  9669  z2ge  9955  nn0fz0  10248  fvinim0ffz  10377  flid  10434  modqabs2  10510  monoord  10637  leexp2r  10745  facwordi  10892  faclbnd6  10896  pfxsuffeqwrdeq  11157  sqrtgt0  11389  abs00ap  11417  isumlessdc  11851  cvgratnnlemnexp  11879  cvgratnnlemmn  11880  eirraplem  12132  nn0seqcvgd  12407  pcidlem  12690  pc2dvds  12697  pcprmpw2  12700  pcmpt  12710  trilpolemclim  16049  trilpolemisumle  16051  trilpolemeq1  16053
  Copyright terms: Public domain W3C validator