![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > leidd | GIF version |
Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
leidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | leid 8058 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2159 class class class wbr 4017 ℝcr 7827 ≤ cle 8010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-pre-ltirr 7940 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-xp 4646 df-cnv 4648 df-pnf 8011 df-mnf 8012 df-xr 8013 df-ltxr 8014 df-le 8015 |
This theorem is referenced by: zextle 9361 uzind 9381 uzid 9559 z2ge 9843 nn0fz0 10136 fvinim0ffz 10258 flid 10301 modqabs2 10375 monoord 10493 leexp2r 10591 facwordi 10737 faclbnd6 10741 sqrtgt0 11060 abs00ap 11088 isumlessdc 11521 cvgratnnlemnexp 11549 cvgratnnlemmn 11550 eirraplem 11801 nn0seqcvgd 12058 pcidlem 12339 pc2dvds 12346 pcprmpw2 12349 pcmpt 12358 trilpolemclim 15168 trilpolemisumle 15170 trilpolemeq1 15172 |
Copyright terms: Public domain | W3C validator |