ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leidd GIF version

Theorem leidd 8541
Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
leidd (𝜑𝐴𝐴)

Proof of Theorem leidd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 leid 8110 . 2 (𝐴 ∈ ℝ → 𝐴𝐴)
31, 2syl 14 1 (𝜑𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167   class class class wbr 4033  cr 7878  cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  zextle  9417  uzind  9437  uzid  9615  z2ge  9901  nn0fz0  10194  fvinim0ffz  10317  flid  10374  modqabs2  10450  monoord  10577  leexp2r  10685  facwordi  10832  faclbnd6  10836  sqrtgt0  11199  abs00ap  11227  isumlessdc  11661  cvgratnnlemnexp  11689  cvgratnnlemmn  11690  eirraplem  11942  nn0seqcvgd  12209  pcidlem  12492  pc2dvds  12499  pcprmpw2  12502  pcmpt  12512  trilpolemclim  15680  trilpolemisumle  15682  trilpolemeq1  15684
  Copyright terms: Public domain W3C validator