| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leidd | GIF version | ||
| Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| leidd | ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | leid 8163 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4047 ℝcr 7931 ≤ cle 8115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-pre-ltirr 8044 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-xp 4685 df-cnv 4687 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 |
| This theorem is referenced by: zextle 9471 uzind 9491 uzid 9669 z2ge 9955 nn0fz0 10248 fvinim0ffz 10377 flid 10434 modqabs2 10510 monoord 10637 leexp2r 10745 facwordi 10892 faclbnd6 10896 pfxsuffeqwrdeq 11157 sqrtgt0 11389 abs00ap 11417 isumlessdc 11851 cvgratnnlemnexp 11879 cvgratnnlemmn 11880 eirraplem 12132 nn0seqcvgd 12407 pcidlem 12690 pc2dvds 12697 pcprmpw2 12700 pcmpt 12710 trilpolemclim 16049 trilpolemisumle 16051 trilpolemeq1 16053 |
| Copyright terms: Public domain | W3C validator |