![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gt0ne0d | GIF version |
Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
gt0ne0d.1 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
gt0ne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7585 | . 2 ⊢ 0 ∈ ℝ | |
2 | gt0ne0d.1 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | ltne 7667 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
4 | 1, 2, 3 | sylancr 406 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1445 ≠ wne 2262 class class class wbr 3867 ℝcr 7446 0cc0 7447 < clt 7619 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1re 7536 ax-addrcl 7539 ax-rnegex 7551 ax-pre-ltirr 7554 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-xp 4473 df-pnf 7621 df-mnf 7622 df-ltxr 7624 |
This theorem is referenced by: sup3exmid 8515 modqval 9880 modqvalr 9881 modqcl 9882 flqpmodeq 9883 modq0 9885 modqge0 9888 modqlt 9889 modqdiffl 9891 modqdifz 9892 modqvalp1 9899 modqid 9905 modqcyc 9915 modqadd1 9917 modqmuladd 9922 modqmuladdnn0 9924 modqmul1 9933 modqdi 9948 modqsubdir 9949 |
Copyright terms: Public domain | W3C validator |