Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gt0ne0d | GIF version |
Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
gt0ne0d.1 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
gt0ne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7907 | . 2 ⊢ 0 ∈ ℝ | |
2 | gt0ne0d.1 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | ltne 7991 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
4 | 1, 2, 3 | sylancr 412 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ≠ wne 2340 class class class wbr 3987 ℝcr 7760 0cc0 7761 < clt 7941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 ax-rnegex 7870 ax-pre-ltirr 7873 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-pnf 7943 df-mnf 7944 df-ltxr 7946 |
This theorem is referenced by: sup3exmid 8860 modqval 10267 modqvalr 10268 modqcl 10269 flqpmodeq 10270 modq0 10272 modqge0 10275 modqlt 10276 modqdiffl 10278 modqdifz 10279 modqvalp1 10286 modqid 10292 modqcyc 10302 modqadd1 10304 modqmuladd 10309 modqmuladdnn0 10311 modqmul1 10320 modqdi 10335 modqsubdir 10336 ennnfonelemp1 12348 |
Copyright terms: Public domain | W3C validator |