ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ne0d GIF version

Theorem gt0ne0d 8410
Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
gt0ne0d.1 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
gt0ne0d (𝜑𝐴 ≠ 0)

Proof of Theorem gt0ne0d
StepHypRef Expression
1 0re 7899 . 2 0 ∈ ℝ
2 gt0ne0d.1 . 2 (𝜑 → 0 < 𝐴)
3 ltne 7983 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
41, 2, 3sylancr 411 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  wne 2336   class class class wbr 3982  cr 7752  0cc0 7753   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862  ax-pre-ltirr 7865
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-ltxr 7938
This theorem is referenced by:  sup3exmid  8852  modqval  10259  modqvalr  10260  modqcl  10261  flqpmodeq  10262  modq0  10264  modqge0  10267  modqlt  10268  modqdiffl  10270  modqdifz  10271  modqvalp1  10278  modqid  10284  modqcyc  10294  modqadd1  10296  modqmuladd  10301  modqmuladdnn0  10303  modqmul1  10312  modqdi  10327  modqsubdir  10328  ennnfonelemp1  12339
  Copyright terms: Public domain W3C validator