| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ne0d | GIF version | ||
| Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| gt0ne0d.1 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| gt0ne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8071 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | gt0ne0d.1 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | ltne 8156 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 4 | 1, 2, 3 | sylancr 414 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ≠ wne 2375 class class class wbr 4043 ℝcr 7923 0cc0 7924 < clt 8106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-rnegex 8033 ax-pre-ltirr 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-pnf 8108 df-mnf 8109 df-ltxr 8111 |
| This theorem is referenced by: sup3exmid 9029 modqval 10467 modqvalr 10468 modqcl 10469 flqpmodeq 10470 modq0 10472 modqge0 10475 modqlt 10476 modqdiffl 10478 modqdifz 10479 modqvalp1 10486 modqid 10492 modqcyc 10502 modqadd1 10504 modqmuladd 10509 modqmuladdnn0 10511 modqmul1 10520 modqdi 10535 modqsubdir 10536 ennnfonelemp1 12719 |
| Copyright terms: Public domain | W3C validator |