| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ne0d | GIF version | ||
| Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| gt0ne0d.1 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| gt0ne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8054 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | gt0ne0d.1 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | ltne 8139 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 4 | 1, 2, 3 | sylancr 414 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ≠ wne 2375 class class class wbr 4043 ℝcr 7906 0cc0 7907 < clt 8089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 ax-rnegex 8016 ax-pre-ltirr 8019 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-pnf 8091 df-mnf 8092 df-ltxr 8094 |
| This theorem is referenced by: sup3exmid 9012 modqval 10450 modqvalr 10451 modqcl 10452 flqpmodeq 10453 modq0 10455 modqge0 10458 modqlt 10459 modqdiffl 10461 modqdifz 10462 modqvalp1 10469 modqid 10475 modqcyc 10485 modqadd1 10487 modqmuladd 10492 modqmuladdnn0 10494 modqmul1 10503 modqdi 10518 modqsubdir 10519 ennnfonelemp1 12696 |
| Copyright terms: Public domain | W3C validator |