ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ne0d GIF version

Theorem gt0ne0d 8483
Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
gt0ne0d.1 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
gt0ne0d (𝜑𝐴 ≠ 0)

Proof of Theorem gt0ne0d
StepHypRef Expression
1 0re 7971 . 2 0 ∈ ℝ
2 gt0ne0d.1 . 2 (𝜑 → 0 < 𝐴)
3 ltne 8056 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
41, 2, 3sylancr 414 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2158  wne 2357   class class class wbr 4015  cr 7824  0cc0 7825   < clt 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922  ax-rnegex 7934  ax-pre-ltirr 7937
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-pnf 8008  df-mnf 8009  df-ltxr 8011
This theorem is referenced by:  sup3exmid  8928  modqval  10338  modqvalr  10339  modqcl  10340  flqpmodeq  10341  modq0  10343  modqge0  10346  modqlt  10347  modqdiffl  10349  modqdifz  10350  modqvalp1  10357  modqid  10363  modqcyc  10373  modqadd1  10375  modqmuladd  10380  modqmuladdnn0  10382  modqmul1  10391  modqdi  10406  modqsubdir  10407  ennnfonelemp1  12421
  Copyright terms: Public domain W3C validator