Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gt0ne0d | GIF version |
Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
gt0ne0d.1 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
gt0ne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7920 | . 2 ⊢ 0 ∈ ℝ | |
2 | gt0ne0d.1 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | ltne 8004 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
4 | 1, 2, 3 | sylancr 412 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ≠ wne 2340 class class class wbr 3989 ℝcr 7773 0cc0 7774 < clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 ax-pre-ltirr 7886 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: sup3exmid 8873 modqval 10280 modqvalr 10281 modqcl 10282 flqpmodeq 10283 modq0 10285 modqge0 10288 modqlt 10289 modqdiffl 10291 modqdifz 10292 modqvalp1 10299 modqid 10305 modqcyc 10315 modqadd1 10317 modqmuladd 10322 modqmuladdnn0 10324 modqmul1 10333 modqdi 10348 modqsubdir 10349 ennnfonelemp1 12361 |
Copyright terms: Public domain | W3C validator |