| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ne0d | GIF version | ||
| Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| gt0ne0d.1 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| gt0ne0d | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8045 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | gt0ne0d.1 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | ltne 8130 | . 2 ⊢ ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
| 4 | 1, 2, 3 | sylancr 414 | 1 ⊢ (𝜑 → 𝐴 ≠ 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4034 ℝcr 7897 0cc0 7898 < clt 8080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 ax-pre-ltirr 8010 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8082 df-mnf 8083 df-ltxr 8085 |
| This theorem is referenced by: sup3exmid 9003 modqval 10435 modqvalr 10436 modqcl 10437 flqpmodeq 10438 modq0 10440 modqge0 10443 modqlt 10444 modqdiffl 10446 modqdifz 10447 modqvalp1 10454 modqid 10460 modqcyc 10470 modqadd1 10472 modqmuladd 10477 modqmuladdnn0 10479 modqmul1 10488 modqdi 10503 modqsubdir 10504 ennnfonelemp1 12650 |
| Copyright terms: Public domain | W3C validator |