ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ne0d GIF version

Theorem gt0ne0d 8655
Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
gt0ne0d.1 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
gt0ne0d (𝜑𝐴 ≠ 0)

Proof of Theorem gt0ne0d
StepHypRef Expression
1 0re 8142 . 2 0 ∈ ℝ
2 gt0ne0d.1 . 2 (𝜑 → 0 < 𝐴)
3 ltne 8227 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
41, 2, 3sylancr 414 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wne 2400   class class class wbr 4082  cr 7994  0cc0 7995   < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-rnegex 8104  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-ltxr 8182
This theorem is referenced by:  sup3exmid  9100  modqval  10541  modqvalr  10542  modqcl  10543  flqpmodeq  10544  modq0  10546  modqge0  10549  modqlt  10550  modqdiffl  10552  modqdifz  10553  modqvalp1  10560  modqid  10566  modqcyc  10576  modqadd1  10578  modqmuladd  10583  modqmuladdnn0  10585  modqmul1  10594  modqdi  10609  modqsubdir  10610  ennnfonelemp1  12972
  Copyright terms: Public domain W3C validator