ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ne0d GIF version

Theorem gt0ne0d 8584
Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
gt0ne0d.1 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
gt0ne0d (𝜑𝐴 ≠ 0)

Proof of Theorem gt0ne0d
StepHypRef Expression
1 0re 8071 . 2 0 ∈ ℝ
2 gt0ne0d.1 . 2 (𝜑 → 0 < 𝐴)
3 ltne 8156 . 2 ((0 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
41, 2, 3sylancr 414 1 (𝜑𝐴 ≠ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wne 2375   class class class wbr 4043  cr 7923  0cc0 7924   < clt 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021  ax-rnegex 8033  ax-pre-ltirr 8036
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-pnf 8108  df-mnf 8109  df-ltxr 8111
This theorem is referenced by:  sup3exmid  9029  modqval  10467  modqvalr  10468  modqcl  10469  flqpmodeq  10470  modq0  10472  modqge0  10475  modqlt  10476  modqdiffl  10478  modqdifz  10479  modqvalp1  10486  modqid  10492  modqcyc  10502  modqadd1  10504  modqmuladd  10509  modqmuladdnn0  10511  modqmul1  10520  modqdi  10535  modqsubdir  10536  ennnfonelemp1  12719
  Copyright terms: Public domain W3C validator