| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzodisjsn | GIF version | ||
| Description: A half-open integer range and the singleton of its upper bound are disjoint. (Contributed by AV, 7-Mar-2021.) |
| Ref | Expression |
|---|---|
| fzodisjsn | ⊢ ((𝐴..^𝐵) ∩ {𝐵}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 3542 | . 2 ⊢ (((𝐴..^𝐵) ∩ {𝐵}) = ∅ ↔ ∀𝑥(𝑥 ∈ (𝐴..^𝐵) → ¬ 𝑥 ∈ {𝐵})) | |
| 2 | elfzoelz 10331 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ ℤ) | |
| 3 | 2 | zred 9557 | . . . . 5 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ∈ ℝ) |
| 4 | elfzolt2 10341 | . . . . 5 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 < 𝐵) | |
| 5 | 3, 4 | ltned 8248 | . . . 4 ⊢ (𝑥 ∈ (𝐴..^𝐵) → 𝑥 ≠ 𝐵) |
| 6 | 5 | neneqd 2421 | . . 3 ⊢ (𝑥 ∈ (𝐴..^𝐵) → ¬ 𝑥 = 𝐵) |
| 7 | elsni 3684 | . . 3 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
| 8 | 6, 7 | nsyl 631 | . 2 ⊢ (𝑥 ∈ (𝐴..^𝐵) → ¬ 𝑥 ∈ {𝐵}) |
| 9 | 1, 8 | mpgbir 1499 | 1 ⊢ ((𝐴..^𝐵) ∩ {𝐵}) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ∈ wcel 2200 ∩ cin 3196 ∅c0 3491 {csn 3666 (class class class)co 5994 ..^cfzo 10326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-fzo 10327 |
| This theorem is referenced by: cats1un 11239 |
| Copyright terms: Public domain | W3C validator |