![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > map0 | GIF version |
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
map0.1 | ⊢ 𝐴 ∈ V |
map0.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
map0 | ⊢ ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | map0.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | map0.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | map0g 6445 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))) | |
4 | 1, 2, 3 | mp2an 417 | 1 ⊢ ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 ≠ wne 2255 Vcvv 2619 ∅c0 3286 (class class class)co 5652 ↑𝑚 cmap 6405 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-map 6407 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |