ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metres2 GIF version

Theorem metres2 14560
Description: Lemma for metres 14562. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅))

Proof of Theorem metres2
StepHypRef Expression
1 metxmet 14534 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 xmetres2 14558 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
31, 2sylan 283 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
4 metf 14530 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
54adantr 276 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
6 simpr 110 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → 𝑅𝑋)
7 xpss12 4767 . . . 4 ((𝑅𝑋𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
86, 7sylancom 420 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋))
95, 8fssresd 5431 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ)
10 ismet2 14533 . 2 ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅) ∧ (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ))
113, 9, 10sylanbrc 417 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wss 3154   × cxp 4658  cres 4662  wf 5251  cfv 5255  cr 7873  ∞Metcxmet 14035  Metcmet 14036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971  ax-rnegex 7983
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-xadd 9842  df-xmet 14043  df-met 14044
This theorem is referenced by:  metres  14562  remet  14727
  Copyright terms: Public domain W3C validator