| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > metres2 | GIF version | ||
| Description: Lemma for metres 14619. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| metres2 | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metxmet 14591 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 2 | xmetres2 14615 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) | |
| 3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |
| 4 | metf 14587 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| 6 | simpr 110 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ⊆ 𝑋) | |
| 7 | xpss12 4770 | . . . 4 ⊢ ((𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) | |
| 8 | 6, 7 | sylancom 420 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
| 9 | 5, 8 | fssresd 5434 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ) |
| 10 | ismet2 14590 | . 2 ⊢ ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅) ↔ ((𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅) ∧ (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ)) | |
| 11 | 3, 9, 10 | sylanbrc 417 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ⊆ wss 3157 × cxp 4661 ↾ cres 4665 ⟶wf 5254 ‘cfv 5258 ℝcr 7878 ∞Metcxmet 14092 Metcmet 14093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-xadd 9848 df-xmet 14100 df-met 14101 |
| This theorem is referenced by: metres 14619 remet 14784 |
| Copyright terms: Public domain | W3C validator |