| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qliftrel | GIF version | ||
| Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
| Ref | Expression |
|---|---|
| qliftrel | ⊢ (𝜑 → 𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
| 2 | qlift.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
| 3 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 4 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) | |
| 5 | 1, 2, 3, 4 | qliftlem 6707 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| 6 | 1, 5, 2 | fliftrel 5868 | 1 ⊢ (𝜑 → 𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3167 〈cop 3637 ↦ cmpt 4109 × cxp 4677 ran crn 4680 Er wer 6624 [cec 6625 / cqs 6626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-er 6627 df-ec 6629 df-qs 6633 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |