![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > logrpap0b | GIF version |
Description: The logarithm is apart from 0 if and only if its argument is apart from 1. (Contributed by Jim Kingdon, 3-Jul-2024.) |
Ref | Expression |
---|---|
logrpap0b | ⊢ (𝐴 ∈ ℝ+ → (𝐴 # 1 ↔ (log‘𝐴) # 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1rp 9689 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
2 | logltb 14772 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝐴 < 1 ↔ (log‘𝐴) < (log‘1))) | |
3 | 1, 2 | mpan2 425 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴 < 1 ↔ (log‘𝐴) < (log‘1))) |
4 | log1 14764 | . . . . 5 ⊢ (log‘1) = 0 | |
5 | 4 | breq2i 4026 | . . . 4 ⊢ ((log‘𝐴) < (log‘1) ↔ (log‘𝐴) < 0) |
6 | 3, 5 | bitrdi 196 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (𝐴 < 1 ↔ (log‘𝐴) < 0)) |
7 | logltb 14772 | . . . . 5 ⊢ ((1 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+) → (1 < 𝐴 ↔ (log‘1) < (log‘𝐴))) | |
8 | 1, 7 | mpan 424 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (1 < 𝐴 ↔ (log‘1) < (log‘𝐴))) |
9 | 4 | breq1i 4025 | . . . 4 ⊢ ((log‘1) < (log‘𝐴) ↔ 0 < (log‘𝐴)) |
10 | 8, 9 | bitrdi 196 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (1 < 𝐴 ↔ 0 < (log‘𝐴))) |
11 | 6, 10 | orbi12d 794 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((𝐴 < 1 ∨ 1 < 𝐴) ↔ ((log‘𝐴) < 0 ∨ 0 < (log‘𝐴)))) |
12 | rpre 9692 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
13 | 1re 7987 | . . 3 ⊢ 1 ∈ ℝ | |
14 | reaplt 8576 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 # 1 ↔ (𝐴 < 1 ∨ 1 < 𝐴))) | |
15 | 12, 13, 14 | sylancl 413 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 # 1 ↔ (𝐴 < 1 ∨ 1 < 𝐴))) |
16 | relogcl 14760 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
17 | 0re 7988 | . . 3 ⊢ 0 ∈ ℝ | |
18 | reaplt 8576 | . . 3 ⊢ (((log‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((log‘𝐴) # 0 ↔ ((log‘𝐴) < 0 ∨ 0 < (log‘𝐴)))) | |
19 | 16, 17, 18 | sylancl 413 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((log‘𝐴) # 0 ↔ ((log‘𝐴) < 0 ∨ 0 < (log‘𝐴)))) |
20 | 11, 15, 19 | 3bitr4d 220 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 # 1 ↔ (log‘𝐴) # 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 ℝcr 7841 0cc0 7842 1c1 7843 < clt 8023 # cap 8569 ℝ+crp 9685 logclog 14754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 ax-pre-suploc 7963 ax-addf 7964 ax-mulf 7965 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-of 6107 df-1st 6166 df-2nd 6167 df-recs 6331 df-irdg 6396 df-frec 6417 df-1o 6442 df-oadd 6446 df-er 6560 df-map 6677 df-pm 6678 df-en 6768 df-dom 6769 df-fin 6770 df-sup 7014 df-inf 7015 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-xneg 9804 df-xadd 9805 df-ioo 9924 df-ico 9926 df-icc 9927 df-fz 10041 df-fzo 10175 df-seqfrec 10479 df-exp 10554 df-fac 10741 df-bc 10763 df-ihash 10791 df-shft 10859 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 df-clim 11322 df-sumdc 11397 df-ef 11691 df-e 11692 df-rest 12749 df-topgen 12768 df-psmet 13873 df-xmet 13874 df-met 13875 df-bl 13876 df-mopn 13877 df-top 13975 df-topon 13988 df-bases 14020 df-ntr 14073 df-cn 14165 df-cnp 14166 df-tx 14230 df-cncf 14535 df-limced 14602 df-dvap 14603 df-relog 14756 |
This theorem is referenced by: logrpap0 14775 logrpap0d 14776 |
Copyright terms: Public domain | W3C validator |