ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemm GIF version

Theorem caucvgprlemm 7600
Description: Lemma for caucvgpr 7614. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗,𝑠   𝑗,𝐹,𝑙   𝐹,𝑟   𝑢,𝐹,𝑗   𝐿,𝑟   𝜑,𝑗,𝑠   𝑠,𝑙
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠)   𝐿(𝑢,𝑗,𝑘,𝑛,𝑠,𝑙)

Proof of Theorem caucvgprlemm
StepHypRef Expression
1 fveq2 5480 . . . . . 6 (𝑗 = 1o → (𝐹𝑗) = (𝐹‘1o))
21breq2d 3988 . . . . 5 (𝑗 = 1o → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹‘1o)))
3 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 1pi 7247 . . . . . 6 1oN
54a1i 9 . . . . 5 (𝜑 → 1oN)
62, 3, 5rspcdva 2830 . . . 4 (𝜑𝐴 <Q (𝐹‘1o))
7 ltrelnq 7297 . . . . . 6 <Q ⊆ (Q × Q)
87brel 4650 . . . . 5 (𝐴 <Q (𝐹‘1o) → (𝐴Q ∧ (𝐹‘1o) ∈ Q))
98simpld 111 . . . 4 (𝐴 <Q (𝐹‘1o) → 𝐴Q)
10 halfnqq 7342 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
116, 9, 103syl 17 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
12 simplr 520 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
13 archrecnq 7595 . . . . . . . 8 (𝑠Q → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
1412, 13syl 14 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
15 simpr 109 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
16 simplr 520 . . . . . . . . . . . . . 14 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝑗N)
17 nnnq 7354 . . . . . . . . . . . . . 14 (𝑗N → [⟨𝑗, 1o⟩] ~QQ)
18 recclnq 7324 . . . . . . . . . . . . . 14 ([⟨𝑗, 1o⟩] ~QQ → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
2012ad2antrr 480 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝑠Q)
21 ltanqg 7332 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑠Q𝑠Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2219, 20, 20, 21syl3anc 1227 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2315, 22mpbid 146 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠))
24 simpllr 524 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) = 𝐴)
2523, 24breqtrd 4002 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝐴)
26 rsp 2511 . . . . . . . . . . . . 13 (∀𝑗N 𝐴 <Q (𝐹𝑗) → (𝑗N𝐴 <Q (𝐹𝑗)))
273, 26syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑗N𝐴 <Q (𝐹𝑗)))
2827ad4antr 486 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑗N𝐴 <Q (𝐹𝑗)))
2916, 28mpd 13 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝐴 <Q (𝐹𝑗))
30 ltsonq 7330 . . . . . . . . . . 11 <Q Or Q
3130, 7sotri 4993 . . . . . . . . . 10 (((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝐴𝐴 <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3225, 29, 31syl2anc 409 . . . . . . . . 9 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3332ex 114 . . . . . . . 8 ((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3433reximdva 2566 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3514, 34mpd 13 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
36 oveq1 5843 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
3736breq1d 3986 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3837rexbidv 2465 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
39 caucvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
4039fveq2i 5483 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
41 nqex 7295 . . . . . . . . . 10 Q ∈ V
4241rabex 4120 . . . . . . . . 9 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
4341rabex 4120 . . . . . . . . 9 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
4442, 43op1st 6106 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
4540, 44eqtri 2185 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
4638, 45elrab2 2880 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4712, 35, 46sylanbrc 414 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4847ex 114 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4948reximdva 2566 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
5011, 49mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
51 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
5251, 5ffvelrnd 5615 . . . . 5 (𝜑 → (𝐹‘1o) ∈ Q)
53 1nq 7298 . . . . 5 1QQ
54 addclnq 7307 . . . . 5 (((𝐹‘1o) ∈ Q ∧ 1QQ) → ((𝐹‘1o) +Q 1Q) ∈ Q)
5552, 53, 54sylancl 410 . . . 4 (𝜑 → ((𝐹‘1o) +Q 1Q) ∈ Q)
56 addclnq 7307 . . . 4 ((((𝐹‘1o) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q)
5755, 53, 56sylancl 410 . . 3 (𝜑 → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q)
58 df-1nqqs 7283 . . . . . . . . 9 1Q = [⟨1o, 1o⟩] ~Q
5958fveq2i 5483 . . . . . . . 8 (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q )
60 rec1nq 7327 . . . . . . . 8 (*Q‘1Q) = 1Q
6159, 60eqtr3i 2187 . . . . . . 7 (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q
6261oveq2i 5847 . . . . . 6 ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) = ((𝐹‘1o) +Q 1Q)
63 ltaddnq 7339 . . . . . . 7 ((((𝐹‘1o) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1o) +Q 1Q) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
6455, 53, 63sylancl 410 . . . . . 6 (𝜑 → ((𝐹‘1o) +Q 1Q) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
6562, 64eqbrtrid 4011 . . . . 5 (𝜑 → ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
66 opeq1 3752 . . . . . . . . . 10 (𝑗 = 1o → ⟨𝑗, 1o⟩ = ⟨1o, 1o⟩)
6766eceq1d 6528 . . . . . . . . 9 (𝑗 = 1o → [⟨𝑗, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
6867fveq2d 5484 . . . . . . . 8 (𝑗 = 1o → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q ))
691, 68oveq12d 5854 . . . . . . 7 (𝑗 = 1o → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )))
7069breq1d 3986 . . . . . 6 (𝑗 = 1o → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7170rspcev 2825 . . . . 5 ((1oN ∧ ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
725, 65, 71syl2anc 409 . . . 4 (𝜑 → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
73 breq2 3980 . . . . . 6 (𝑢 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7473rexbidv 2465 . . . . 5 (𝑢 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7539fveq2i 5483 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
7642, 43op2nd 6107 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
7775, 76eqtri 2185 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
7874, 77elrab2 2880 . . . 4 ((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7957, 72, 78sylanbrc 414 . . 3 (𝜑 → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
80 eleq1 2227 . . . 4 (𝑟 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
8180rspcev 2825 . . 3 (((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8257, 79, 81syl2anc 409 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8350, 82jca 304 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  wral 2442  wrex 2443  {crab 2446  cop 3573   class class class wbr 3976  wf 5178  cfv 5182  (class class class)co 5836  1st c1st 6098  2nd c2nd 6099  1oc1o 6368  [cec 6490  Ncnpi 7204   <N clti 7207   ~Q ceq 7211  Qcnq 7212  1Qc1q 7213   +Q cplq 7214  *Qcrq 7216   <Q cltq 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285
This theorem is referenced by:  caucvgprlemcl  7608
  Copyright terms: Public domain W3C validator