Proof of Theorem caucvgprlemm
| Step | Hyp | Ref
 | Expression | 
| 1 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑗 = 1o → (𝐹‘𝑗) = (𝐹‘1o)) | 
| 2 | 1 | breq2d 4045 | 
. . . . 5
⊢ (𝑗 = 1o → (𝐴 <Q
(𝐹‘𝑗) ↔ 𝐴 <Q (𝐹‘1o))) | 
| 3 |   | caucvgpr.bnd | 
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) | 
| 4 |   | 1pi 7382 | 
. . . . . 6
⊢
1o ∈ N | 
| 5 | 4 | a1i 9 | 
. . . . 5
⊢ (𝜑 → 1o ∈
N) | 
| 6 | 2, 3, 5 | rspcdva 2873 | 
. . . 4
⊢ (𝜑 → 𝐴 <Q (𝐹‘1o)) | 
| 7 |   | ltrelnq 7432 | 
. . . . . 6
⊢ 
<Q ⊆ (Q ×
Q) | 
| 8 | 7 | brel 4715 | 
. . . . 5
⊢ (𝐴 <Q
(𝐹‘1o)
→ (𝐴 ∈
Q ∧ (𝐹‘1o) ∈
Q)) | 
| 9 | 8 | simpld 112 | 
. . . 4
⊢ (𝐴 <Q
(𝐹‘1o)
→ 𝐴 ∈
Q) | 
| 10 |   | halfnqq 7477 | 
. . . 4
⊢ (𝐴 ∈ Q →
∃𝑠 ∈
Q (𝑠
+Q 𝑠) = 𝐴) | 
| 11 | 6, 9, 10 | 3syl 17 | 
. . 3
⊢ (𝜑 → ∃𝑠 ∈ Q (𝑠 +Q 𝑠) = 𝐴) | 
| 12 |   | simplr 528 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ Q) ∧ (𝑠 +Q
𝑠) = 𝐴) → 𝑠 ∈ Q) | 
| 13 |   | archrecnq 7730 | 
. . . . . . . 8
⊢ (𝑠 ∈ Q →
∃𝑗 ∈
N (*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) | 
| 14 | 12, 13 | syl 14 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ Q) ∧ (𝑠 +Q
𝑠) = 𝐴) → ∃𝑗 ∈ N
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) | 
| 15 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) →
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) | 
| 16 |   | simplr 528 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) → 𝑗 ∈ N) | 
| 17 |   | nnnq 7489 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ N →
[〈𝑗,
1o〉] ~Q ∈
Q) | 
| 18 |   | recclnq 7459 | 
. . . . . . . . . . . . . 14
⊢
([〈𝑗,
1o〉] ~Q ∈ Q →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) | 
| 19 | 16, 17, 18 | 3syl 17 | 
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) →
(*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q) | 
| 20 | 12 | ad2antrr 488 | 
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) → 𝑠 ∈ Q) | 
| 21 |   | ltanqg 7467 | 
. . . . . . . . . . . . 13
⊢
(((*Q‘[〈𝑗, 1o〉]
~Q ) ∈ Q ∧ 𝑠 ∈ Q ∧ 𝑠 ∈ Q) →
((*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠 ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠))) | 
| 22 | 19, 20, 20, 21 | syl3anc 1249 | 
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) →
((*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠 ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠))) | 
| 23 | 15, 22 | mpbid 147 | 
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝑠 +Q
𝑠)) | 
| 24 |   | simpllr 534 | 
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) = 𝐴) | 
| 25 | 23, 24 | breqtrd 4059 | 
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝐴) | 
| 26 |   | rsp 2544 | 
. . . . . . . . . . . . 13
⊢
(∀𝑗 ∈
N 𝐴
<Q (𝐹‘𝑗) → (𝑗 ∈ N → 𝐴 <Q
(𝐹‘𝑗))) | 
| 27 | 3, 26 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑗 ∈ N → 𝐴 <Q
(𝐹‘𝑗))) | 
| 28 | 27 | ad4antr 494 | 
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) → (𝑗 ∈ N → 𝐴 <Q
(𝐹‘𝑗))) | 
| 29 | 16, 28 | mpd 13 | 
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) → 𝐴 <Q (𝐹‘𝑗)) | 
| 30 |   | ltsonq 7465 | 
. . . . . . . . . . 11
⊢ 
<Q Or Q | 
| 31 | 30, 7 | sotri 5065 | 
. . . . . . . . . 10
⊢ (((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝐴 ∧ 𝐴 <Q (𝐹‘𝑗)) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 32 | 25, 29, 31 | syl2anc 411 | 
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ Q) ∧
(𝑠
+Q 𝑠) = 𝐴) ∧ 𝑗 ∈ N) ∧
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠) → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 33 | 32 | ex 115 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Q) ∧ (𝑠 +Q
𝑠) = 𝐴) ∧ 𝑗 ∈ N) →
((*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠 → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 34 | 33 | reximdva 2599 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ Q) ∧ (𝑠 +Q
𝑠) = 𝐴) → (∃𝑗 ∈ N
(*Q‘[〈𝑗, 1o〉]
~Q ) <Q 𝑠 → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 35 | 14, 34 | mpd 13 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ Q) ∧ (𝑠 +Q
𝑠) = 𝐴) → ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 36 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 37 | 36 | breq1d 4043 | 
. . . . . . . 8
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 38 | 37 | rexbidv 2498 | 
. . . . . . 7
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 39 |   | caucvgpr.lim | 
. . . . . . . . 9
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 40 | 39 | fveq2i 5561 | 
. . . . . . . 8
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) | 
| 41 |   | nqex 7430 | 
. . . . . . . . . 10
⊢
Q ∈ V | 
| 42 | 41 | rabex 4177 | 
. . . . . . . . 9
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V | 
| 43 | 41 | rabex 4177 | 
. . . . . . . . 9
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V | 
| 44 | 42, 43 | op1st 6204 | 
. . . . . . . 8
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} | 
| 45 | 40, 44 | eqtri 2217 | 
. . . . . . 7
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} | 
| 46 | 38, 45 | elrab2 2923 | 
. . . . . 6
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 47 | 12, 35, 46 | sylanbrc 417 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Q) ∧ (𝑠 +Q
𝑠) = 𝐴) → 𝑠 ∈ (1st ‘𝐿)) | 
| 48 | 47 | ex 115 | 
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ Q) → ((𝑠 +Q
𝑠) = 𝐴 → 𝑠 ∈ (1st ‘𝐿))) | 
| 49 | 48 | reximdva 2599 | 
. . 3
⊢ (𝜑 → (∃𝑠 ∈ Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿))) | 
| 50 | 11, 49 | mpd 13 | 
. 2
⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿)) | 
| 51 |   | caucvgpr.f | 
. . . . . 6
⊢ (𝜑 → 𝐹:N⟶Q) | 
| 52 | 51, 5 | ffvelcdmd 5698 | 
. . . . 5
⊢ (𝜑 → (𝐹‘1o) ∈
Q) | 
| 53 |   | 1nq 7433 | 
. . . . 5
⊢
1Q ∈ Q | 
| 54 |   | addclnq 7442 | 
. . . . 5
⊢ (((𝐹‘1o) ∈
Q ∧ 1Q ∈ Q)
→ ((𝐹‘1o)
+Q 1Q) ∈
Q) | 
| 55 | 52, 53, 54 | sylancl 413 | 
. . . 4
⊢ (𝜑 → ((𝐹‘1o)
+Q 1Q) ∈
Q) | 
| 56 |   | addclnq 7442 | 
. . . 4
⊢ ((((𝐹‘1o)
+Q 1Q) ∈ Q
∧ 1Q ∈ Q) → (((𝐹‘1o)
+Q 1Q)
+Q 1Q) ∈
Q) | 
| 57 | 55, 53, 56 | sylancl 413 | 
. . 3
⊢ (𝜑 → (((𝐹‘1o)
+Q 1Q)
+Q 1Q) ∈
Q) | 
| 58 |   | df-1nqqs 7418 | 
. . . . . . . . 9
⊢
1Q = [〈1o, 1o〉]
~Q | 
| 59 | 58 | fveq2i 5561 | 
. . . . . . . 8
⊢
(*Q‘1Q) =
(*Q‘[〈1o, 1o〉]
~Q ) | 
| 60 |   | rec1nq 7462 | 
. . . . . . . 8
⊢
(*Q‘1Q) =
1Q | 
| 61 | 59, 60 | eqtr3i 2219 | 
. . . . . . 7
⊢
(*Q‘[〈1o,
1o〉] ~Q ) =
1Q | 
| 62 | 61 | oveq2i 5933 | 
. . . . . 6
⊢ ((𝐹‘1o)
+Q
(*Q‘[〈1o, 1o〉]
~Q )) = ((𝐹‘1o)
+Q 1Q) | 
| 63 |   | ltaddnq 7474 | 
. . . . . . 7
⊢ ((((𝐹‘1o)
+Q 1Q) ∈ Q
∧ 1Q ∈ Q) → ((𝐹‘1o)
+Q 1Q)
<Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q)) | 
| 64 | 55, 53, 63 | sylancl 413 | 
. . . . . 6
⊢ (𝜑 → ((𝐹‘1o)
+Q 1Q)
<Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q)) | 
| 65 | 62, 64 | eqbrtrid 4068 | 
. . . . 5
⊢ (𝜑 → ((𝐹‘1o)
+Q
(*Q‘[〈1o, 1o〉]
~Q )) <Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q)) | 
| 66 |   | opeq1 3808 | 
. . . . . . . . . 10
⊢ (𝑗 = 1o →
〈𝑗,
1o〉 = 〈1o,
1o〉) | 
| 67 | 66 | eceq1d 6628 | 
. . . . . . . . 9
⊢ (𝑗 = 1o →
[〈𝑗,
1o〉] ~Q = [〈1o,
1o〉] ~Q ) | 
| 68 | 67 | fveq2d 5562 | 
. . . . . . . 8
⊢ (𝑗 = 1o →
(*Q‘[〈𝑗, 1o〉]
~Q ) =
(*Q‘[〈1o, 1o〉]
~Q )) | 
| 69 | 1, 68 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝑗 = 1o → ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘1o)
+Q
(*Q‘[〈1o, 1o〉]
~Q ))) | 
| 70 | 69 | breq1d 4043 | 
. . . . . 6
⊢ (𝑗 = 1o → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q) ↔ ((𝐹‘1o)
+Q
(*Q‘[〈1o, 1o〉]
~Q )) <Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q))) | 
| 71 | 70 | rspcev 2868 | 
. . . . 5
⊢
((1o ∈ N ∧ ((𝐹‘1o)
+Q
(*Q‘[〈1o, 1o〉]
~Q )) <Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q)) → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q)) | 
| 72 | 5, 65, 71 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q)) | 
| 73 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑢 = (((𝐹‘1o)
+Q 1Q)
+Q 1Q) → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q))) | 
| 74 | 73 | rexbidv 2498 | 
. . . . 5
⊢ (𝑢 = (((𝐹‘1o)
+Q 1Q)
+Q 1Q) → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q))) | 
| 75 | 39 | fveq2i 5561 | 
. . . . . 6
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) | 
| 76 | 42, 43 | op2nd 6205 | 
. . . . . 6
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} | 
| 77 | 75, 76 | eqtri 2217 | 
. . . . 5
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} | 
| 78 | 74, 77 | elrab2 2923 | 
. . . 4
⊢ ((((𝐹‘1o)
+Q 1Q)
+Q 1Q) ∈ (2nd
‘𝐿) ↔ ((((𝐹‘1o)
+Q 1Q)
+Q 1Q) ∈ Q
∧ ∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (((𝐹‘1o)
+Q 1Q)
+Q 1Q))) | 
| 79 | 57, 72, 78 | sylanbrc 417 | 
. . 3
⊢ (𝜑 → (((𝐹‘1o)
+Q 1Q)
+Q 1Q) ∈ (2nd
‘𝐿)) | 
| 80 |   | eleq1 2259 | 
. . . 4
⊢ (𝑟 = (((𝐹‘1o)
+Q 1Q)
+Q 1Q) → (𝑟 ∈ (2nd
‘𝐿) ↔ (((𝐹‘1o)
+Q 1Q)
+Q 1Q) ∈ (2nd
‘𝐿))) | 
| 81 | 80 | rspcev 2868 | 
. . 3
⊢
(((((𝐹‘1o)
+Q 1Q)
+Q 1Q) ∈ Q
∧ (((𝐹‘1o)
+Q 1Q)
+Q 1Q) ∈ (2nd
‘𝐿)) →
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐿)) | 
| 82 | 57, 79, 81 | syl2anc 411 | 
. 2
⊢ (𝜑 → ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐿)) | 
| 83 | 50, 82 | jca 306 | 
1
⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐿))) |