ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemm GIF version

Theorem caucvgprlemm 7788
Description: Lemma for caucvgpr 7802. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗,𝑠   𝑗,𝐹,𝑙   𝐹,𝑟   𝑢,𝐹,𝑗   𝐿,𝑟   𝜑,𝑗,𝑠   𝑠,𝑙
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠)   𝐿(𝑢,𝑗,𝑘,𝑛,𝑠,𝑙)

Proof of Theorem caucvgprlemm
StepHypRef Expression
1 fveq2 5583 . . . . . 6 (𝑗 = 1o → (𝐹𝑗) = (𝐹‘1o))
21breq2d 4059 . . . . 5 (𝑗 = 1o → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹‘1o)))
3 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 1pi 7435 . . . . . 6 1oN
54a1i 9 . . . . 5 (𝜑 → 1oN)
62, 3, 5rspcdva 2883 . . . 4 (𝜑𝐴 <Q (𝐹‘1o))
7 ltrelnq 7485 . . . . . 6 <Q ⊆ (Q × Q)
87brel 4731 . . . . 5 (𝐴 <Q (𝐹‘1o) → (𝐴Q ∧ (𝐹‘1o) ∈ Q))
98simpld 112 . . . 4 (𝐴 <Q (𝐹‘1o) → 𝐴Q)
10 halfnqq 7530 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
116, 9, 103syl 17 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
12 simplr 528 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
13 archrecnq 7783 . . . . . . . 8 (𝑠Q → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
1412, 13syl 14 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
15 simpr 110 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
16 simplr 528 . . . . . . . . . . . . . 14 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝑗N)
17 nnnq 7542 . . . . . . . . . . . . . 14 (𝑗N → [⟨𝑗, 1o⟩] ~QQ)
18 recclnq 7512 . . . . . . . . . . . . . 14 ([⟨𝑗, 1o⟩] ~QQ → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
2012ad2antrr 488 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝑠Q)
21 ltanqg 7520 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑠Q𝑠Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2219, 20, 20, 21syl3anc 1250 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2315, 22mpbid 147 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠))
24 simpllr 534 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) = 𝐴)
2523, 24breqtrd 4073 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝐴)
26 rsp 2554 . . . . . . . . . . . . 13 (∀𝑗N 𝐴 <Q (𝐹𝑗) → (𝑗N𝐴 <Q (𝐹𝑗)))
273, 26syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑗N𝐴 <Q (𝐹𝑗)))
2827ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑗N𝐴 <Q (𝐹𝑗)))
2916, 28mpd 13 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝐴 <Q (𝐹𝑗))
30 ltsonq 7518 . . . . . . . . . . 11 <Q Or Q
3130, 7sotri 5083 . . . . . . . . . 10 (((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝐴𝐴 <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3225, 29, 31syl2anc 411 . . . . . . . . 9 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3332ex 115 . . . . . . . 8 ((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3433reximdva 2609 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3514, 34mpd 13 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
36 oveq1 5958 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
3736breq1d 4057 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3837rexbidv 2508 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
39 caucvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
4039fveq2i 5586 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
41 nqex 7483 . . . . . . . . . 10 Q ∈ V
4241rabex 4192 . . . . . . . . 9 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
4341rabex 4192 . . . . . . . . 9 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
4442, 43op1st 6239 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
4540, 44eqtri 2227 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
4638, 45elrab2 2933 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4712, 35, 46sylanbrc 417 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4847ex 115 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4948reximdva 2609 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
5011, 49mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
51 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
5251, 5ffvelcdmd 5723 . . . . 5 (𝜑 → (𝐹‘1o) ∈ Q)
53 1nq 7486 . . . . 5 1QQ
54 addclnq 7495 . . . . 5 (((𝐹‘1o) ∈ Q ∧ 1QQ) → ((𝐹‘1o) +Q 1Q) ∈ Q)
5552, 53, 54sylancl 413 . . . 4 (𝜑 → ((𝐹‘1o) +Q 1Q) ∈ Q)
56 addclnq 7495 . . . 4 ((((𝐹‘1o) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q)
5755, 53, 56sylancl 413 . . 3 (𝜑 → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q)
58 df-1nqqs 7471 . . . . . . . . 9 1Q = [⟨1o, 1o⟩] ~Q
5958fveq2i 5586 . . . . . . . 8 (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q )
60 rec1nq 7515 . . . . . . . 8 (*Q‘1Q) = 1Q
6159, 60eqtr3i 2229 . . . . . . 7 (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q
6261oveq2i 5962 . . . . . 6 ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) = ((𝐹‘1o) +Q 1Q)
63 ltaddnq 7527 . . . . . . 7 ((((𝐹‘1o) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1o) +Q 1Q) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
6455, 53, 63sylancl 413 . . . . . 6 (𝜑 → ((𝐹‘1o) +Q 1Q) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
6562, 64eqbrtrid 4082 . . . . 5 (𝜑 → ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
66 opeq1 3821 . . . . . . . . . 10 (𝑗 = 1o → ⟨𝑗, 1o⟩ = ⟨1o, 1o⟩)
6766eceq1d 6663 . . . . . . . . 9 (𝑗 = 1o → [⟨𝑗, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
6867fveq2d 5587 . . . . . . . 8 (𝑗 = 1o → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q ))
691, 68oveq12d 5969 . . . . . . 7 (𝑗 = 1o → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )))
7069breq1d 4057 . . . . . 6 (𝑗 = 1o → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7170rspcev 2878 . . . . 5 ((1oN ∧ ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
725, 65, 71syl2anc 411 . . . 4 (𝜑 → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
73 breq2 4051 . . . . . 6 (𝑢 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7473rexbidv 2508 . . . . 5 (𝑢 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7539fveq2i 5586 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
7642, 43op2nd 6240 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
7775, 76eqtri 2227 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
7874, 77elrab2 2933 . . . 4 ((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7957, 72, 78sylanbrc 417 . . 3 (𝜑 → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
80 eleq1 2269 . . . 4 (𝑟 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
8180rspcev 2878 . . 3 (((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8257, 79, 81syl2anc 411 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8350, 82jca 306 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489  cop 3637   class class class wbr 4047  wf 5272  cfv 5276  (class class class)co 5951  1st c1st 6231  2nd c2nd 6232  1oc1o 6502  [cec 6625  Ncnpi 7392   <N clti 7395   ~Q ceq 7399  Qcnq 7400  1Qc1q 7401   +Q cplq 7402  *Qcrq 7404   <Q cltq 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473
This theorem is referenced by:  caucvgprlemcl  7796
  Copyright terms: Public domain W3C validator