ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemm GIF version

Theorem caucvgprlemm 7823
Description: Lemma for caucvgpr 7837. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗,𝑠   𝑗,𝐹,𝑙   𝐹,𝑟   𝑢,𝐹,𝑗   𝐿,𝑟   𝜑,𝑗,𝑠   𝑠,𝑙
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠)   𝐿(𝑢,𝑗,𝑘,𝑛,𝑠,𝑙)

Proof of Theorem caucvgprlemm
StepHypRef Expression
1 fveq2 5603 . . . . . 6 (𝑗 = 1o → (𝐹𝑗) = (𝐹‘1o))
21breq2d 4074 . . . . 5 (𝑗 = 1o → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹‘1o)))
3 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 1pi 7470 . . . . . 6 1oN
54a1i 9 . . . . 5 (𝜑 → 1oN)
62, 3, 5rspcdva 2892 . . . 4 (𝜑𝐴 <Q (𝐹‘1o))
7 ltrelnq 7520 . . . . . 6 <Q ⊆ (Q × Q)
87brel 4748 . . . . 5 (𝐴 <Q (𝐹‘1o) → (𝐴Q ∧ (𝐹‘1o) ∈ Q))
98simpld 112 . . . 4 (𝐴 <Q (𝐹‘1o) → 𝐴Q)
10 halfnqq 7565 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
116, 9, 103syl 17 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
12 simplr 528 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
13 archrecnq 7818 . . . . . . . 8 (𝑠Q → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
1412, 13syl 14 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
15 simpr 110 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
16 simplr 528 . . . . . . . . . . . . . 14 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝑗N)
17 nnnq 7577 . . . . . . . . . . . . . 14 (𝑗N → [⟨𝑗, 1o⟩] ~QQ)
18 recclnq 7547 . . . . . . . . . . . . . 14 ([⟨𝑗, 1o⟩] ~QQ → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
2012ad2antrr 488 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝑠Q)
21 ltanqg 7555 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑠Q𝑠Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2219, 20, 20, 21syl3anc 1252 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2315, 22mpbid 147 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠))
24 simpllr 534 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) = 𝐴)
2523, 24breqtrd 4088 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝐴)
26 rsp 2557 . . . . . . . . . . . . 13 (∀𝑗N 𝐴 <Q (𝐹𝑗) → (𝑗N𝐴 <Q (𝐹𝑗)))
273, 26syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑗N𝐴 <Q (𝐹𝑗)))
2827ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑗N𝐴 <Q (𝐹𝑗)))
2916, 28mpd 13 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝐴 <Q (𝐹𝑗))
30 ltsonq 7553 . . . . . . . . . . 11 <Q Or Q
3130, 7sotri 5100 . . . . . . . . . 10 (((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝐴𝐴 <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3225, 29, 31syl2anc 411 . . . . . . . . 9 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3332ex 115 . . . . . . . 8 ((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3433reximdva 2612 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3514, 34mpd 13 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
36 oveq1 5981 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
3736breq1d 4072 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3837rexbidv 2511 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
39 caucvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
4039fveq2i 5606 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
41 nqex 7518 . . . . . . . . . 10 Q ∈ V
4241rabex 4207 . . . . . . . . 9 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
4341rabex 4207 . . . . . . . . 9 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
4442, 43op1st 6262 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
4540, 44eqtri 2230 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
4638, 45elrab2 2942 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4712, 35, 46sylanbrc 417 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4847ex 115 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4948reximdva 2612 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
5011, 49mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
51 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
5251, 5ffvelcdmd 5744 . . . . 5 (𝜑 → (𝐹‘1o) ∈ Q)
53 1nq 7521 . . . . 5 1QQ
54 addclnq 7530 . . . . 5 (((𝐹‘1o) ∈ Q ∧ 1QQ) → ((𝐹‘1o) +Q 1Q) ∈ Q)
5552, 53, 54sylancl 413 . . . 4 (𝜑 → ((𝐹‘1o) +Q 1Q) ∈ Q)
56 addclnq 7530 . . . 4 ((((𝐹‘1o) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q)
5755, 53, 56sylancl 413 . . 3 (𝜑 → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q)
58 df-1nqqs 7506 . . . . . . . . 9 1Q = [⟨1o, 1o⟩] ~Q
5958fveq2i 5606 . . . . . . . 8 (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q )
60 rec1nq 7550 . . . . . . . 8 (*Q‘1Q) = 1Q
6159, 60eqtr3i 2232 . . . . . . 7 (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q
6261oveq2i 5985 . . . . . 6 ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) = ((𝐹‘1o) +Q 1Q)
63 ltaddnq 7562 . . . . . . 7 ((((𝐹‘1o) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1o) +Q 1Q) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
6455, 53, 63sylancl 413 . . . . . 6 (𝜑 → ((𝐹‘1o) +Q 1Q) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
6562, 64eqbrtrid 4097 . . . . 5 (𝜑 → ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
66 opeq1 3836 . . . . . . . . . 10 (𝑗 = 1o → ⟨𝑗, 1o⟩ = ⟨1o, 1o⟩)
6766eceq1d 6686 . . . . . . . . 9 (𝑗 = 1o → [⟨𝑗, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
6867fveq2d 5607 . . . . . . . 8 (𝑗 = 1o → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q ))
691, 68oveq12d 5992 . . . . . . 7 (𝑗 = 1o → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )))
7069breq1d 4072 . . . . . 6 (𝑗 = 1o → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7170rspcev 2887 . . . . 5 ((1oN ∧ ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
725, 65, 71syl2anc 411 . . . 4 (𝜑 → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
73 breq2 4066 . . . . . 6 (𝑢 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7473rexbidv 2511 . . . . 5 (𝑢 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7539fveq2i 5606 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
7642, 43op2nd 6263 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
7775, 76eqtri 2230 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
7874, 77elrab2 2942 . . . 4 ((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7957, 72, 78sylanbrc 417 . . 3 (𝜑 → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
80 eleq1 2272 . . . 4 (𝑟 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
8180rspcev 2887 . . 3 (((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8257, 79, 81syl2anc 411 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8350, 82jca 306 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wral 2488  wrex 2489  {crab 2492  cop 3649   class class class wbr 4062  wf 5290  cfv 5294  (class class class)co 5974  1st c1st 6254  2nd c2nd 6255  1oc1o 6525  [cec 6648  Ncnpi 7427   <N clti 7430   ~Q ceq 7434  Qcnq 7435  1Qc1q 7436   +Q cplq 7437  *Qcrq 7439   <Q cltq 7440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508
This theorem is referenced by:  caucvgprlemcl  7831
  Copyright terms: Public domain W3C validator