![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > telfsumo2 | GIF version |
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
telfsumo.1 | ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) |
telfsumo.2 | ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) |
telfsumo.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
telfsumo.4 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) |
telfsumo.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
telfsumo.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
telfsumo2 | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | telfsumo.1 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) | |
2 | 1 | negeqd 8214 | . . 3 ⊢ (𝑘 = 𝑗 → -𝐴 = -𝐵) |
3 | telfsumo.2 | . . . 4 ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) | |
4 | 3 | negeqd 8214 | . . 3 ⊢ (𝑘 = (𝑗 + 1) → -𝐴 = -𝐶) |
5 | telfsumo.3 | . . . 4 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) | |
6 | 5 | negeqd 8214 | . . 3 ⊢ (𝑘 = 𝑀 → -𝐴 = -𝐷) |
7 | telfsumo.4 | . . . 4 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) | |
8 | 7 | negeqd 8214 | . . 3 ⊢ (𝑘 = 𝑁 → -𝐴 = -𝐸) |
9 | telfsumo.5 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
10 | telfsumo.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
11 | 10 | negcld 8317 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -𝐴 ∈ ℂ) |
12 | 2, 4, 6, 8, 9, 11 | telfsumo 11609 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = (-𝐷 − -𝐸)) |
13 | 10 | ralrimiva 2567 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
14 | elfzofz 10229 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁)) | |
15 | 1 | eleq1d 2262 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
16 | 15 | rspccva 2863 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
17 | 13, 14, 16 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ) |
18 | fzofzp1 10294 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) | |
19 | 3 | eleq1d 2262 | . . . . . 6 ⊢ (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
20 | 19 | rspccva 2863 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ) |
21 | 13, 18, 20 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ) |
22 | 17, 21 | neg2subd 8347 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (-𝐵 − -𝐶) = (𝐶 − 𝐵)) |
23 | 22 | sumeq2dv 11511 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵)) |
24 | 5 | eleq1d 2262 | . . . 4 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
25 | eluzfz1 10097 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
26 | 9, 25 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
27 | 24, 13, 26 | rspcdva 2869 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
28 | 7 | eleq1d 2262 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
29 | eluzfz2 10098 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
30 | 9, 29 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
31 | 28, 13, 30 | rspcdva 2869 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
32 | 27, 31 | neg2subd 8347 | . 2 ⊢ (𝜑 → (-𝐷 − -𝐸) = (𝐸 − 𝐷)) |
33 | 12, 23, 32 | 3eqtr3d 2234 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 1c1 7873 + caddc 7875 − cmin 8190 -cneg 8191 ℤ≥cuz 9592 ...cfz 10074 ..^cfzo 10208 Σcsu 11496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 |
This theorem is referenced by: telfsum2 11612 |
Copyright terms: Public domain | W3C validator |