![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > telfsumo2 | GIF version |
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
telfsumo.1 | ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) |
telfsumo.2 | ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) |
telfsumo.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
telfsumo.4 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) |
telfsumo.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
telfsumo.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
telfsumo2 | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | telfsumo.1 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) | |
2 | 1 | negeqd 7880 | . . 3 ⊢ (𝑘 = 𝑗 → -𝐴 = -𝐵) |
3 | telfsumo.2 | . . . 4 ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) | |
4 | 3 | negeqd 7880 | . . 3 ⊢ (𝑘 = (𝑗 + 1) → -𝐴 = -𝐶) |
5 | telfsumo.3 | . . . 4 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) | |
6 | 5 | negeqd 7880 | . . 3 ⊢ (𝑘 = 𝑀 → -𝐴 = -𝐷) |
7 | telfsumo.4 | . . . 4 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) | |
8 | 7 | negeqd 7880 | . . 3 ⊢ (𝑘 = 𝑁 → -𝐴 = -𝐸) |
9 | telfsumo.5 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
10 | telfsumo.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
11 | 10 | negcld 7983 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -𝐴 ∈ ℂ) |
12 | 2, 4, 6, 8, 9, 11 | telfsumo 11127 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = (-𝐷 − -𝐸)) |
13 | 10 | ralrimiva 2479 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
14 | elfzofz 9832 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁)) | |
15 | 1 | eleq1d 2183 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
16 | 15 | rspccva 2759 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
17 | 13, 14, 16 | syl2an 285 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ) |
18 | fzofzp1 9897 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) | |
19 | 3 | eleq1d 2183 | . . . . . 6 ⊢ (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
20 | 19 | rspccva 2759 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ) |
21 | 13, 18, 20 | syl2an 285 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ) |
22 | 17, 21 | neg2subd 8013 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (-𝐵 − -𝐶) = (𝐶 − 𝐵)) |
23 | 22 | sumeq2dv 11029 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵)) |
24 | 5 | eleq1d 2183 | . . . 4 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
25 | eluzfz1 9704 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
26 | 9, 25 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
27 | 24, 13, 26 | rspcdva 2765 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
28 | 7 | eleq1d 2183 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
29 | eluzfz2 9705 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
30 | 9, 29 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
31 | 28, 13, 30 | rspcdva 2765 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
32 | 27, 31 | neg2subd 8013 | . 2 ⊢ (𝜑 → (-𝐷 − -𝐸) = (𝐸 − 𝐷)) |
33 | 12, 23, 32 | 3eqtr3d 2155 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 ∀wral 2390 ‘cfv 5081 (class class class)co 5728 ℂcc 7545 1c1 7548 + caddc 7550 − cmin 7856 -cneg 7857 ℤ≥cuz 9228 ...cfz 9683 ..^cfzo 9812 Σcsu 11014 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-precex 7655 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 ax-pre-mulgt0 7662 ax-pre-mulext 7663 ax-arch 7664 ax-caucvg 7665 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-isom 5090 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-irdg 6221 df-frec 6242 df-1o 6267 df-oadd 6271 df-er 6383 df-en 6589 df-dom 6590 df-fin 6591 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-reap 8255 df-ap 8262 df-div 8346 df-inn 8631 df-2 8689 df-3 8690 df-4 8691 df-n0 8882 df-z 8959 df-uz 9229 df-q 9314 df-rp 9344 df-fz 9684 df-fzo 9813 df-seqfrec 10112 df-exp 10186 df-ihash 10415 df-cj 10507 df-re 10508 df-im 10509 df-rsqrt 10662 df-abs 10663 df-clim 10940 df-sumdc 11015 |
This theorem is referenced by: telfsum2 11130 |
Copyright terms: Public domain | W3C validator |