| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > telfsumo2 | GIF version | ||
| Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.) |
| Ref | Expression |
|---|---|
| telfsumo.1 | ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) |
| telfsumo.2 | ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) |
| telfsumo.3 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
| telfsumo.4 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) |
| telfsumo.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| telfsumo.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| telfsumo2 | ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telfsumo.1 | . . . 4 ⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) | |
| 2 | 1 | negeqd 8349 | . . 3 ⊢ (𝑘 = 𝑗 → -𝐴 = -𝐵) |
| 3 | telfsumo.2 | . . . 4 ⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) | |
| 4 | 3 | negeqd 8349 | . . 3 ⊢ (𝑘 = (𝑗 + 1) → -𝐴 = -𝐶) |
| 5 | telfsumo.3 | . . . 4 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) | |
| 6 | 5 | negeqd 8349 | . . 3 ⊢ (𝑘 = 𝑀 → -𝐴 = -𝐷) |
| 7 | telfsumo.4 | . . . 4 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) | |
| 8 | 7 | negeqd 8349 | . . 3 ⊢ (𝑘 = 𝑁 → -𝐴 = -𝐸) |
| 9 | telfsumo.5 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 10 | telfsumo.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 11 | 10 | negcld 8452 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -𝐴 ∈ ℂ) |
| 12 | 2, 4, 6, 8, 9, 11 | telfsumo 11985 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = (-𝐷 − -𝐸)) |
| 13 | 10 | ralrimiva 2603 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 14 | elfzofz 10367 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁)) | |
| 15 | 1 | eleq1d 2298 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 16 | 15 | rspccva 2906 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
| 17 | 13, 14, 16 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ) |
| 18 | fzofzp1 10441 | . . . . 5 ⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) | |
| 19 | 3 | eleq1d 2298 | . . . . . 6 ⊢ (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
| 20 | 19 | rspccva 2906 | . . . . 5 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ) |
| 21 | 13, 18, 20 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ) |
| 22 | 17, 21 | neg2subd 8482 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (-𝐵 − -𝐶) = (𝐶 − 𝐵)) |
| 23 | 22 | sumeq2dv 11887 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵)) |
| 24 | 5 | eleq1d 2298 | . . . 4 ⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
| 25 | eluzfz1 10235 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
| 26 | 9, 25 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 27 | 24, 13, 26 | rspcdva 2912 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 28 | 7 | eleq1d 2298 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
| 29 | eluzfz2 10236 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
| 30 | 9, 29 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 31 | 28, 13, 30 | rspcdva 2912 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 32 | 27, 31 | neg2subd 8482 | . 2 ⊢ (𝜑 → (-𝐷 − -𝐸) = (𝐸 − 𝐷)) |
| 33 | 12, 23, 32 | 3eqtr3d 2270 | 1 ⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 − 𝐵) = (𝐸 − 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 1c1 8008 + caddc 8010 − cmin 8325 -cneg 8326 ℤ≥cuz 9730 ...cfz 10212 ..^cfzo 10346 Σcsu 11872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 |
| This theorem is referenced by: telfsum2 11988 |
| Copyright terms: Public domain | W3C validator |