| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqord2 | GIF version | ||
| Description: A strictly decreasing real function on a subset of ℝ is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| ltord.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| ltord.2 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) |
| ltord.3 | ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) |
| ltord.4 | ⊢ 𝑆 ⊆ ℝ |
| ltord.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| ltord2.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) |
| Ref | Expression |
|---|---|
| eqord2 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 2 | 1 | negeqd 8238 | . . 3 ⊢ (𝑥 = 𝑦 → -𝐴 = -𝐵) |
| 3 | ltord.2 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) | |
| 4 | 3 | negeqd 8238 | . . 3 ⊢ (𝑥 = 𝐶 → -𝐴 = -𝑀) |
| 5 | ltord.3 | . . . 4 ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) | |
| 6 | 5 | negeqd 8238 | . . 3 ⊢ (𝑥 = 𝐷 → -𝐴 = -𝑁) |
| 7 | ltord.4 | . . 3 ⊢ 𝑆 ⊆ ℝ | |
| 8 | ltord.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
| 9 | 8 | renegcld 8423 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → -𝐴 ∈ ℝ) |
| 10 | ltord2.6 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) | |
| 11 | 8 | ralrimiva 2570 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ) |
| 12 | 1 | eleq1d 2265 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
| 13 | 12 | rspccva 2867 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝑦 ∈ 𝑆) → 𝐵 ∈ ℝ) |
| 14 | 11, 13 | sylan 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐵 ∈ ℝ) |
| 15 | 14 | adantrl 478 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐵 ∈ ℝ) |
| 16 | 8 | adantrr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐴 ∈ ℝ) |
| 17 | ltneg 8506 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵)) | |
| 18 | 15, 16, 17 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵)) |
| 19 | 10, 18 | sylibd 149 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → -𝐴 < -𝐵)) |
| 20 | 2, 4, 6, 7, 9, 19 | eqord1 8527 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ -𝑀 = -𝑁)) |
| 21 | 3 | eleq1d 2265 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ)) |
| 22 | 21 | rspccva 2867 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 23 | 11, 22 | sylan 283 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 24 | 23 | adantrr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℝ) |
| 25 | 24 | recnd 8072 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℂ) |
| 26 | 5 | eleq1d 2265 | . . . . . . 7 ⊢ (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ)) |
| 27 | 26 | rspccva 2867 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
| 28 | 11, 27 | sylan 283 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
| 29 | 28 | adantrl 478 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℝ) |
| 30 | 29 | recnd 8072 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℂ) |
| 31 | 25, 30 | neg11ad 8350 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (-𝑀 = -𝑁 ↔ 𝑀 = 𝑁)) |
| 32 | 20, 31 | bitrd 188 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 class class class wbr 4034 ℝcr 7895 < clt 8078 -cneg 8215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-sub 8216 df-neg 8217 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |