| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqord2 | GIF version | ||
| Description: A strictly decreasing real function on a subset of ℝ is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| ltord.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| ltord.2 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) |
| ltord.3 | ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) |
| ltord.4 | ⊢ 𝑆 ⊆ ℝ |
| ltord.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| ltord2.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) |
| Ref | Expression |
|---|---|
| eqord2 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 2 | 1 | negeqd 8337 | . . 3 ⊢ (𝑥 = 𝑦 → -𝐴 = -𝐵) |
| 3 | ltord.2 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) | |
| 4 | 3 | negeqd 8337 | . . 3 ⊢ (𝑥 = 𝐶 → -𝐴 = -𝑀) |
| 5 | ltord.3 | . . . 4 ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) | |
| 6 | 5 | negeqd 8337 | . . 3 ⊢ (𝑥 = 𝐷 → -𝐴 = -𝑁) |
| 7 | ltord.4 | . . 3 ⊢ 𝑆 ⊆ ℝ | |
| 8 | ltord.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
| 9 | 8 | renegcld 8522 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → -𝐴 ∈ ℝ) |
| 10 | ltord2.6 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐵 < 𝐴)) | |
| 11 | 8 | ralrimiva 2603 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ) |
| 12 | 1 | eleq1d 2298 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
| 13 | 12 | rspccva 2906 | . . . . . . 7 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝑦 ∈ 𝑆) → 𝐵 ∈ ℝ) |
| 14 | 11, 13 | sylan 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐵 ∈ ℝ) |
| 15 | 14 | adantrl 478 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐵 ∈ ℝ) |
| 16 | 8 | adantrr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐴 ∈ ℝ) |
| 17 | ltneg 8605 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵)) | |
| 18 | 15, 16, 17 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵)) |
| 19 | 10, 18 | sylibd 149 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → -𝐴 < -𝐵)) |
| 20 | 2, 4, 6, 7, 9, 19 | eqord1 8626 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ -𝑀 = -𝑁)) |
| 21 | 3 | eleq1d 2298 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ)) |
| 22 | 21 | rspccva 2906 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 23 | 11, 22 | sylan 283 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 24 | 23 | adantrr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℝ) |
| 25 | 24 | recnd 8171 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℂ) |
| 26 | 5 | eleq1d 2298 | . . . . . . 7 ⊢ (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ)) |
| 27 | 26 | rspccva 2906 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
| 28 | 11, 27 | sylan 283 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
| 29 | 28 | adantrl 478 | . . . 4 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℝ) |
| 30 | 29 | recnd 8171 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℂ) |
| 31 | 25, 30 | neg11ad 8449 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (-𝑀 = -𝑁 ↔ 𝑀 = 𝑁)) |
| 32 | 20, 31 | bitrd 188 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 class class class wbr 4082 ℝcr 7994 < clt 8177 -cneg 8314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-sub 8315 df-neg 8316 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |