ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqord2 GIF version

Theorem eqord2 8437
Description: A strictly decreasing real function on a subset of is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord2.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
Assertion
Ref Expression
eqord2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem eqord2
StepHypRef Expression
1 ltord.1 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
21negeqd 8148 . . 3 (𝑥 = 𝑦 → -𝐴 = -𝐵)
3 ltord.2 . . . 4 (𝑥 = 𝐶𝐴 = 𝑀)
43negeqd 8148 . . 3 (𝑥 = 𝐶 → -𝐴 = -𝑀)
5 ltord.3 . . . 4 (𝑥 = 𝐷𝐴 = 𝑁)
65negeqd 8148 . . 3 (𝑥 = 𝐷 → -𝐴 = -𝑁)
7 ltord.4 . . 3 𝑆 ⊆ ℝ
8 ltord.5 . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
98renegcld 8333 . . 3 ((𝜑𝑥𝑆) → -𝐴 ∈ ℝ)
10 ltord2.6 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
118ralrimiva 2550 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
121eleq1d 2246 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
1312rspccva 2840 . . . . . . 7 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝑦𝑆) → 𝐵 ∈ ℝ)
1411, 13sylan 283 . . . . . 6 ((𝜑𝑦𝑆) → 𝐵 ∈ ℝ)
1514adantrl 478 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐵 ∈ ℝ)
168adantrr 479 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 ∈ ℝ)
17 ltneg 8415 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1815, 16, 17syl2anc 411 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1910, 18sylibd 149 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦 → -𝐴 < -𝐵))
202, 4, 6, 7, 9, 19eqord1 8436 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷 ↔ -𝑀 = -𝑁))
213eleq1d 2246 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
2221rspccva 2840 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2311, 22sylan 283 . . . . 5 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
2423adantrr 479 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℝ)
2524recnd 7982 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℂ)
265eleq1d 2246 . . . . . . 7 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2726rspccva 2840 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2811, 27sylan 283 . . . . 5 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2928adantrl 478 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℝ)
3029recnd 7982 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℂ)
3125, 30neg11ad 8260 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (-𝑀 = -𝑁𝑀 = 𝑁))
3220, 31bitrd 188 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wss 3129   class class class wbr 4002  cr 7807   < clt 7988  -cneg 8125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-distr 7912  ax-i2m1 7913  ax-0id 7916  ax-rnegex 7917  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-apti 7923  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-ltxr 7993  df-sub 8126  df-neg 8127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator