Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnima | GIF version |
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
cnima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2175 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 13193 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 275 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simprd 114 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
6 | imaeq2 4959 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
7 | 6 | eleq1d 2244 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
8 | 7 | rspccva 2838 | . 2 ⊢ ((∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
9 | 5, 8 | sylan 283 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ∪ cuni 3805 ◡ccnv 4619 “ cima 4623 ⟶wf 5204 (class class class)co 5865 Topctop 12988 Cn ccn 13178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-top 12989 df-topon 13002 df-cn 13181 |
This theorem is referenced by: cnco 13214 cnclima 13216 cnntri 13217 cnss1 13219 cnss2 13220 cncnpi 13221 cnrest 13228 txcnmpt 13266 txdis1cn 13271 imasnopn 13292 hmeoima 13303 hmeoopn 13304 hmeoimaf1o 13307 |
Copyright terms: Public domain | W3C validator |