![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5bbr | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bbr.1 | ⊢ (𝜓 ↔ 𝜑) |
syl5bbr.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5bbr | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 131 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | syl5bbr.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | syl5bb 191 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr3g 221 ianordc 838 19.16 1493 19.19 1602 cbvab 2211 necon1bbiidc 2317 rspc2gv 2734 elabgt 2758 sbceq1a 2850 sbcralt 2916 sbcrext 2917 sbccsbg 2960 sbccsb2g 2961 iunpw 4315 tfis 4411 xp11m 4882 ressn 4984 fnssresb 5139 fun11iun 5287 funimass4 5368 dffo4 5461 f1ompt 5464 fliftf 5592 resoprab2 5756 ralrnmpt2 5773 rexrnmpt2 5774 1stconst 6000 2ndconst 6001 dfsmo2 6066 smoiso 6081 brecop 6396 ixpsnf1o 6507 ac6sfi 6668 prarloclemn 7119 axcaucvglemres 7495 reapti 8117 indstr 9142 iccneg 9467 sqap0 10082 sqrt00 10534 absefib 11121 efieq1re 11122 prmind2 11441 |
Copyright terms: Public domain | W3C validator |