| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tsetid | GIF version | ||
| Description: Utility theorem: index-independent form of df-tset 13137. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| tsetid | ⊢ TopSet = Slot (TopSet‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tset 13137 | . 2 ⊢ TopSet = Slot 9 | |
| 2 | 9nn 9287 | . 2 ⊢ 9 ∈ ℕ | |
| 3 | 1, 2 | ndxid 13064 | 1 ⊢ TopSet = Slot (TopSet‘ndx) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ‘cfv 5318 9c9 9176 ndxcnx 13037 Slot cslot 13039 TopSetcts 13124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-ndx 13043 df-slot 13044 df-tset 13137 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |