HomeHome Intuitionistic Logic Explorer
Theorem List (p. 127 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12601-12700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmgm1 12601 The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Mgm)
 
Theoremopifismgmdc 12602* A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
𝐵 = (Base‘𝑀)    &   (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → DECID 𝜓)    &   (𝜑 → ∃𝑥 𝑥𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)       (𝜑𝑀 ∈ Mgm)
 
7.1.2  Identity elements

According to Wikipedia ("Identity element", 7-Feb-2020, https://en.wikipedia.org/wiki/Identity_element): "In mathematics, an identity element, or neutral element, is a special type of element of a set with respect to a binary operation on that set, which leaves any element of the set unchanged when combined with it.". Or in more detail "... an element e of S is called a left identity if e * a = a for all a in S, and a right identity if a * e = a for all a in S. If e is both a left identity and a right identity, then it is called a two-sided identity, or simply an identity." We concentrate on two-sided identities in the following. The existence of an identity (an identity is unique if it exists, see mgmidmo 12603) is an important property of monoids, and therefore also for groups, but also for magmas not required to be associative. Magmas with an identity element are called "unital magmas" (see Definition 2 in [BourbakiAlg1] p. 12) or, if the magmas are cancellative, "loops" (see definition in [Bruck] p. 15).

In the context of extensible structures, the identity element (of any magma 𝑀) is defined as "group identity element" (0g𝑀), see df-0g 12575. Related theorems which are already valid for magmas are provided in the following.

 
Theoremmgmidmo 12603* A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
 
Theoremgrpidvalg 12604* The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
 
Theoremgrpidpropdg 12605* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (0g𝐾) = (0g𝐿))
 
Theoremfn0g 12606 The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
0g Fn V
 
Theorem0g0 12607 The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
∅ = (0g‘∅)
 
Theoremismgmid 12608* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
 
Theoremmgmidcl 12609* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       (𝜑0𝐵)
 
Theoremmgmlrid 12610* The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
 
Theoremismgmid2 12611* Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝑈𝐵)    &   ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)       (𝜑𝑈 = 0 )
 
Theoremlidrideqd 12612* If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
(𝜑𝐿𝐵)    &   (𝜑𝑅𝐵)    &   (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)    &   (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)       (𝜑𝐿 = 𝑅)
 
Theoremlidrididd 12613* If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 12612) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
(𝜑𝐿𝐵)    &   (𝜑𝑅𝐵)    &   (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)    &   (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)    &   𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝜑𝐿 = 0 )
 
Theoremgrpidd 12614* Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)       (𝜑0 = (0g𝐺))
 
Theoremmgmidsssn0 12615* Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}       (𝐺𝑉𝑂 ⊆ { 0 })
 
Theoremgrprinvlem 12616* Lemma for grprinvd 12617. (Contributed by NM, 9-Aug-2013.)
((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   (𝜑𝑂𝐵)    &   ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)    &   ((𝜑𝜓) → 𝑋𝐵)    &   ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)       ((𝜑𝜓) → 𝑋 = 𝑂)
 
Theoremgrprinvd 12617* Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   (𝜑𝑂𝐵)    &   ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)    &   ((𝜑𝜓) → 𝑋𝐵)    &   ((𝜑𝜓) → 𝑁𝐵)    &   ((𝜑𝜓) → (𝑁 + 𝑋) = 𝑂)       ((𝜑𝜓) → (𝑋 + 𝑁) = 𝑂)
 
Theoremgrpridd 12618* Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   (𝜑𝑂𝐵)    &   ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)       ((𝜑𝑥𝐵) → (𝑥 + 𝑂) = 𝑥)
 
7.2  The complex numbers as an algebraic extensible structure
 
7.2.1  Definition and basic properties
 
Syntaxcpsmet 12619 Extend class notation with the class of all pseudometric spaces.
class PsMet
 
Syntaxcxmet 12620 Extend class notation with the class of all extended metric spaces.
class ∞Met
 
Syntaxcmet 12621 Extend class notation with the class of all metrics.
class Met
 
Syntaxcbl 12622 Extend class notation with the metric space ball function.
class ball
 
Syntaxcfbas 12623 Extend class definition to include the class of filter bases.
class fBas
 
Syntaxcfg 12624 Extend class definition to include the filter generating function.
class filGen
 
Syntaxcmopn 12625 Extend class notation with a function mapping each metric space to the family of its open sets.
class MetOpen
 
Syntaxcmetu 12626 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
class metUnif
 
Definitiondf-psmet 12627* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
 
Definitiondf-xmet 12628* Define the set of all extended metrics on a given base set. The definition is similar to df-met 12629, but we also allow the metric to take on the value +∞. (Contributed by Mario Carneiro, 20-Aug-2015.)
∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
 
Definitiondf-met 12629* Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.)
Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))})
 
Definitiondf-bl 12630* Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
 
Definitiondf-mopn 12631 Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
 
Definitiondf-fbas 12632* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑥 ∩ 𝒫 (𝑦𝑧)) ≠ ∅)})
 
Definitiondf-fg 12633* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
 
Definitiondf-metu 12634* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
 
PART 8  BASIC TOPOLOGY
 
8.1  Topology
 
8.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.

 
8.1.1.1  Topologies
 
Syntaxctop 12635 Syntax for the class of topologies.
class Top
 
Definitiondf-top 12636* Define the class of topologies. It is a proper class. See istopg 12637 and istopfin 12638 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
 
Theoremistopg 12637* Express the predicate "𝐽 is a topology". See istopfin 12638 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

(𝐽𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑦) ∈ 𝐽)))
 
Theoremistopfin 12638* Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 12637. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
(𝐽 ∈ Top → (∀𝑥(𝑥𝐽 𝑥𝐽) ∧ ∀𝑥((𝑥𝐽𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐽)))
 
Theoremuniopn 12639 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)
 
Theoremiunopn 12640* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
((𝐽 ∈ Top ∧ ∀𝑥𝐴 𝐵𝐽) → 𝑥𝐴 𝐵𝐽)
 
Theoreminopn 12641 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
 
Theoremfiinopn 12642 The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
(𝐽 ∈ Top → ((𝐴𝐽𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐽))
 
Theoremunopn 12643 The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
 
Theorem0opn 12644 The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
(𝐽 ∈ Top → ∅ ∈ 𝐽)
 
Theorem0ntop 12645 The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
¬ ∅ ∈ Top
 
Theoremtopopn 12646 The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
𝑋 = 𝐽       (𝐽 ∈ Top → 𝑋𝐽)
 
Theoremeltopss 12647 A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)
 
8.1.1.2  Topologies on sets
 
Syntaxctopon 12648 Syntax for the function of topologies on sets.
class TopOn
 
Definitiondf-topon 12649* Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.)
TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
 
Theoremfuntopon 12650 The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
Fun TopOn
 
Theoremistopon 12651 Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
 
Theoremtopontop 12652 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
 
Theoremtoponuni 12653 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
 
Theoremtopontopi 12654 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐽 ∈ (TopOn‘𝐵)       𝐽 ∈ Top
 
Theoremtoponunii 12655 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐽 ∈ (TopOn‘𝐵)       𝐵 = 𝐽
 
Theoremtoptopon 12656 Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
 
Theoremtoptopon2 12657 A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
(𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
 
Theoremtopontopon 12658 A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
(𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘ 𝐽))
 
Theoremtoponrestid 12659 Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
𝐴 ∈ (TopOn‘𝐵)       𝐴 = (𝐴t 𝐵)
 
Theoremtoponsspwpwg 12660 The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
(𝐴𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴)
 
Theoremdmtopon 12661 The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.)
dom TopOn = V
 
Theoremfntopon 12662 The class TopOn is a function with domain V. (Contributed by BJ, 29-Apr-2021.)
TopOn Fn V
 
Theoremtoponmax 12663 The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.)
(𝐽 ∈ (TopOn‘𝐵) → 𝐵𝐽)
 
Theoremtoponss 12664 A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
 
Theoremtoponcom 12665 If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.)
((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))
 
Theoremtoponcomb 12666 Biconditional form of toponcom 12665. (Contributed by BJ, 5-Dec-2021.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) ↔ 𝐾 ∈ (TopOn‘ 𝐽)))
 
Theoremtopgele 12667 The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
(𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
 
8.1.1.3  Topological spaces
 
Syntaxctps 12668 Syntax for the class of topological spaces.
class TopSp
 
Definitiondf-topsp 12669 Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.)
TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
 
Theoremistps 12670 Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
 
Theoremistps2 12671 Express the predicate "is a topological space". (Contributed by NM, 20-Oct-2012.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
 
Theoremtpsuni 12672 The base set of a topological space. (Contributed by FL, 27-Jun-2014.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp → 𝐴 = 𝐽)
 
Theoremtpstop 12673 The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.)
𝐽 = (TopOpen‘𝐾)       (𝐾 ∈ TopSp → 𝐽 ∈ Top)
 
Theoremtpspropd 12674 A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))       (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
 
Theoremtopontopn 12675 Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopSet‘𝐾)       (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
 
Theoremtsettps 12676 If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐴 = (Base‘𝐾)    &   𝐽 = (TopSet‘𝐾)       (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
 
Theoremistpsi 12677 Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.)
(Base‘𝐾) = 𝐴    &   (TopOpen‘𝐾) = 𝐽    &   𝐴 = 𝐽    &   𝐽 ∈ Top       𝐾 ∈ TopSp
 
Theoremeltpsg 12678 Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.)
𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}       (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
 
Theoremeltpsi 12679 Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}    &   𝐴 = 𝐽    &   𝐽 ∈ Top       𝐾 ∈ TopSp
 
8.1.2  Topological bases
 
Syntaxctb 12680 Syntax for the class of topological bases.
class TopBases
 
Definitiondf-bases 12681* Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 12683). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.)
TopBases = {𝑥 ∣ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ⊆ (𝑥 ∩ 𝒫 (𝑦𝑧))}
 
Theoremisbasisg 12682* Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
(𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ⊆ (𝐵 ∩ 𝒫 (𝑥𝑦))))
 
Theoremisbasis2g 12683* Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
(𝐵𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦))))
 
Theoremisbasis3g 12684* Express the predicate "the set 𝐵 is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.)
(𝐵𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥𝐵 𝑥 𝐵 ∧ ∀𝑥 𝐵𝑦𝐵 𝑥𝑦 ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥𝑦)∃𝑤𝐵 (𝑧𝑤𝑤 ⊆ (𝑥𝑦)))))
 
Theorembasis1 12685 Property of a basis. (Contributed by NM, 16-Jul-2006.)
((𝐵 ∈ TopBases ∧ 𝐶𝐵𝐷𝐵) → (𝐶𝐷) ⊆ (𝐵 ∩ 𝒫 (𝐶𝐷)))
 
Theorembasis2 12686* Property of a basis. (Contributed by NM, 17-Jul-2006.)
(((𝐵 ∈ TopBases ∧ 𝐶𝐵) ∧ (𝐷𝐵𝐴 ∈ (𝐶𝐷))) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))
 
Theoremfiinbas 12687* If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases)
 
Theorembaspartn 12688* A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
 
Theoremtgval 12689* The topology generated by a basis. See also tgval2 12691 and tgval3 12698. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (topGen‘𝐵) = {𝑥𝑥 (𝐵 ∩ 𝒫 𝑥)})
 
Theoremtgvalex 12690 The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.)
(𝐵𝑉 → (topGen‘𝐵) ∈ V)
 
Theoremtgval2 12691* Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 12704) that (topGen‘𝐵) is indeed a topology (on 𝐵, see unitg 12702). See also tgval 12689 and tgval3 12698. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 𝐵 ∧ ∀𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))})
 
Theoremeltg 12692 Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 (𝐵 ∩ 𝒫 𝐴)))
 
Theoremeltg2 12693* Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 𝐵 ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴))))
 
Theoremeltg2b 12694* Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
(𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑦𝑦𝐴)))
 
Theoremeltg4i 12695 An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
(𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
 
Theoremeltg3i 12696 The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
((𝐵𝑉𝐴𝐵) → 𝐴 ∈ (topGen‘𝐵))
 
Theoremeltg3 12697* Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.)
(𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
 
Theoremtgval3 12698* Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 12689 and tgval2 12691. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.)
(𝐵𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦𝐵𝑥 = 𝑦)})
 
Theoremtg1 12699 Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
(𝐴 ∈ (topGen‘𝐵) → 𝐴 𝐵)
 
Theoremtg2 12700* Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >