| Intuitionistic Logic Explorer Theorem List (p. 127 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 4sqlem15 12601* | Lemma for 4sq 12606. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ ((𝜑 ∧ 𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))) | ||
| Theorem | 4sqlem16 12602* | Lemma for 4sq 12606. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ (𝜑 → (𝑅 ≤ 𝑀 ∧ ((𝑅 = 0 ∨ 𝑅 = 𝑀) → (𝑀↑2) ∥ (𝑀 · 𝑃)))) | ||
| Theorem | 4sqlem17 12603* | Lemma for 4sq 12606. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) & ⊢ (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2)))) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | 4sqlem18 12604* | Lemma for 4sq 12606. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆) & ⊢ 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} & ⊢ 𝑀 = inf(𝑇, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑃 ∈ 𝑆) | ||
| Theorem | 4sqlem19 12605* | Lemma for 4sq 12606. The proof is by strong induction - we show that if all the integers less than 𝑘 are in 𝑆, then 𝑘 is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 12604. If 𝑘 is 0, 1, 2, we show 𝑘 ∈ 𝑆 directly; otherwise if 𝑘 is composite, 𝑘 is the product of two numbers less than it (and hence in 𝑆 by assumption), so by mul4sq 12590 𝑘 ∈ 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⇒ ⊢ ℕ0 = 𝑆 | ||
| Theorem | 4sq 12606* | Lagrange's four-square theorem, or Bachet's conjecture: every nonnegative integer is expressible as a sum of four squares. This is Metamath 100 proof #19. (Contributed by Mario Carneiro, 16-Jul-2014.) |
| ⊢ (𝐴 ∈ ℕ0 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) | ||
| Theorem | dec2dvds 12607 | Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 · 2) = 𝐶 & ⊢ 𝐷 = (𝐶 + 1) ⇒ ⊢ ¬ 2 ∥ ;𝐴𝐷 | ||
| Theorem | dec5dvds 12608 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐵 < 5 ⇒ ⊢ ¬ 5 ∥ ;𝐴𝐵 | ||
| Theorem | dec5dvds2 12609 | Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐵 < 5 & ⊢ (5 + 𝐵) = 𝐶 ⇒ ⊢ ¬ 5 ∥ ;𝐴𝐶 | ||
| Theorem | dec5nprm 12610 | A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ ¬ ;𝐴5 ∈ ℙ | ||
| Theorem | dec2nprm 12611 | A decimal number greater than 10 and ending with an even digit is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 · 2) = 𝐶 ⇒ ⊢ ¬ ;𝐴𝐶 ∈ ℙ | ||
| Theorem | modxai 12612 | Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
| ⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) & ⊢ (𝐵 + 𝐶) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
| Theorem | mod2xi 12613 | Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (2 · 𝐵) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
| Theorem | modxp1i 12614 | Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (𝐵 + 1) = 𝐸 & ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) ⇒ ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) | ||
| Theorem | modsubi 12615 | Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑁 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) & ⊢ (𝑀 + 𝐵) = 𝐾 ⇒ ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) | ||
| Theorem | gcdi 12616 | Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.) |
| ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ (𝑁 gcd 𝑅) = 𝐺 & ⊢ ((𝐾 · 𝑁) + 𝑅) = 𝑀 ⇒ ⊢ (𝑀 gcd 𝑁) = 𝐺 | ||
| Theorem | gcdmodi 12617 | Calculate a GCD via Euclid's algorithm. Theorem 5.6 in [ApostolNT] p. 109. (Contributed by Mario Carneiro, 19-Feb-2014.) |
| ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ & ⊢ (𝐾 mod 𝑁) = (𝑅 mod 𝑁) & ⊢ (𝑁 gcd 𝑅) = 𝐺 ⇒ ⊢ (𝐾 gcd 𝑁) = 𝐺 | ||
| Theorem | numexp0 12618 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴↑0) = 1 | ||
| Theorem | numexp1 12619 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴↑1) = 𝐴 | ||
| Theorem | numexpp1 12620 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 1) = 𝑁 & ⊢ ((𝐴↑𝑀) · 𝐴) = 𝐶 ⇒ ⊢ (𝐴↑𝑁) = 𝐶 | ||
| Theorem | numexp2x 12621 | Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (2 · 𝑀) = 𝑁 & ⊢ (𝐴↑𝑀) = 𝐷 & ⊢ (𝐷 · 𝐷) = 𝐶 ⇒ ⊢ (𝐴↑𝑁) = 𝐶 | ||
| Theorem | decsplit0b 12622 | Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑0)) + 𝐵) = (𝐴 + 𝐵) | ||
| Theorem | decsplit0 12623 | Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑0)) + 0) = 𝐴 | ||
| Theorem | decsplit1 12624 | Split a decimal number into two parts. Base case: 𝑁 = 1. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((𝐴 · (;10↑1)) + 𝐵) = ;𝐴𝐵 | ||
| Theorem | decsplit 12625 | Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 1) = 𝑁 & ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 ⇒ ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 | ||
| Theorem | karatsuba 12626 | The Karatsuba multiplication algorithm. If 𝑋 and 𝑌 are decomposed into two groups of digits of length 𝑀 (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then 𝑋𝑌 can be written in three groups of digits, where each group needs only one multiplication. Thus, we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 9540. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑆 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐴 · 𝐶) = 𝑅 & ⊢ (𝐵 · 𝐷) = 𝑇 & ⊢ ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇) & ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝑋 & ⊢ ((𝐶 · (;10↑𝑀)) + 𝐷) = 𝑌 & ⊢ ((𝑅 · (;10↑𝑀)) + 𝑆) = 𝑊 & ⊢ ((𝑊 · (;10↑𝑀)) + 𝑇) = 𝑍 ⇒ ⊢ (𝑋 · 𝑌) = 𝑍 | ||
| Theorem | 2exp4 12627 | Two to the fourth power is 16. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ (2↑4) = ;16 | ||
| Theorem | 2exp5 12628 | Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (2↑5) = ;32 | ||
| Theorem | 2exp6 12629 | Two to the sixth power is 64. (Contributed by Mario Carneiro, 20-Apr-2015.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ (2↑6) = ;64 | ||
| Theorem | 2exp7 12630 | Two to the seventh power is 128. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (2↑7) = ;;128 | ||
| Theorem | 2exp8 12631 | Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ (2↑8) = ;;256 | ||
| Theorem | 2exp11 12632 | Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (2↑;11) = ;;;2048 | ||
| Theorem | 2exp16 12633 | Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ (2↑;16) = ;;;;65536 | ||
| Theorem | 3exp3 12634 | Three to the third power is 27. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| ⊢ (3↑3) = ;27 | ||
| Theorem | 2expltfac 12635 | The factorial grows faster than two to the power 𝑁. (Contributed by Mario Carneiro, 15-Sep-2016.) |
| ⊢ (𝑁 ∈ (ℤ≥‘4) → (2↑𝑁) < (!‘𝑁)) | ||
| Theorem | oddennn 12636 | There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.) |
| ⊢ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ | ||
| Theorem | evenennn 12637 | There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
| ⊢ {𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ | ||
| Theorem | xpnnen 12638 | The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.) |
| ⊢ (ℕ × ℕ) ≈ ℕ | ||
| Theorem | xpomen 12639 | The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) |
| ⊢ (ω × ω) ≈ ω | ||
| Theorem | xpct 12640 | The cartesian product of two sets dominated by ω is dominated by ω. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω) | ||
| Theorem | unennn 12641 | The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.) |
| ⊢ ((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ≈ ℕ) | ||
| Theorem | znnen 12642 | The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.) |
| ⊢ ℤ ≈ ℕ | ||
| Theorem | ennnfonelemdc 12643* | Lemma for ennnfone 12669. A direct consequence of fidcenumlemrk 7029. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → 𝑃 ∈ ω) ⇒ ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) | ||
| Theorem | ennnfonelemk 12644* | Lemma for ennnfone 12669. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹‘𝐾) ≠ (𝐹‘𝑗)) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝐾) | ||
| Theorem | ennnfonelemj0 12645* | Lemma for ennnfone 12669. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) | ||
| Theorem | ennnfonelemjn 12646* | Lemma for ennnfone 12669. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) | ||
| Theorem | ennnfonelemg 12647* | Lemma for ennnfone 12669. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) | ||
| Theorem | ennnfonelemh 12648* | Lemma for ennnfone 12669. (Contributed by Jim Kingdon, 8-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) | ||
| Theorem | ennnfonelem0 12649* | Lemma for ennnfone 12669. Initial value. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → (𝐻‘0) = ∅) | ||
| Theorem | ennnfonelemp1 12650* | Lemma for ennnfone 12669. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) | ||
| Theorem | ennnfonelem1 12651* | Lemma for ennnfone 12669. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) ⇒ ⊢ (𝜑 → (𝐻‘1) = {〈∅, (𝐹‘∅)〉}) | ||
| Theorem | ennnfonelemom 12652* | Lemma for ennnfone 12669. 𝐻 yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → dom (𝐻‘𝑃) ∈ ω) | ||
| Theorem | ennnfonelemhdmp1 12653* | Lemma for ennnfone 12669. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) & ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) ⇒ ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) | ||
| Theorem | ennnfonelemss 12654* | Lemma for ennnfone 12669. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) | ||
| Theorem | ennnfoneleminc 12655* | Lemma for ennnfone 12669. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) & ⊢ (𝜑 → 𝑄 ∈ ℕ0) & ⊢ (𝜑 → 𝑃 ≤ 𝑄) ⇒ ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘𝑄)) | ||
| Theorem | ennnfonelemkh 12656* | Lemma for ennnfone 12669. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → dom (𝐻‘𝑃) ⊆ (◡𝑁‘𝑃)) | ||
| Theorem | ennnfonelemhf1o 12657* | Lemma for ennnfone 12669. Each of the functions in 𝐻 is one to one and onto an image of 𝐹. (Contributed by Jim Kingdon, 17-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘𝑃):dom (𝐻‘𝑃)–1-1-onto→(𝐹 “ (◡𝑁‘𝑃))) | ||
| Theorem | ennnfonelemex 12658* | Lemma for ennnfone 12669. Extending the sequence (𝐻‘𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑃 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻‘𝑃) ∈ dom (𝐻‘𝑖)) | ||
| Theorem | ennnfonelemhom 12659* | Lemma for ennnfone 12669. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑀 ∈ ω) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻‘𝑖)) | ||
| Theorem | ennnfonelemrnh 12660* | Lemma for ennnfone 12669. A consequence of ennnfonelemss 12654. (Contributed by Jim Kingdon, 16-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐻) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐻) ⇒ ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ∨ 𝑌 ⊆ 𝑋)) | ||
| Theorem | ennnfonelemfun 12661* | Lemma for ennnfone 12669. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → Fun 𝐿) | ||
| Theorem | ennnfonelemf1 12662* | Lemma for ennnfone 12669. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → 𝐿:dom 𝐿–1-1→𝐴) | ||
| Theorem | ennnfonelemrn 12663* | Lemma for ennnfone 12669. 𝐿 is onto 𝐴. (Contributed by Jim Kingdon, 16-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → ran 𝐿 = 𝐴) | ||
| Theorem | ennnfonelemdm 12664* | Lemma for ennnfone 12669. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → dom 𝐿 = ω) | ||
| Theorem | ennnfonelemen 12665* | Lemma for ennnfone 12669. The result. (Contributed by Jim Kingdon, 16-Jul-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) & ⊢ 𝐻 = seq0(𝐺, 𝐽) & ⊢ 𝐿 = ∪ 𝑖 ∈ ℕ0 (𝐻‘𝑖) ⇒ ⊢ (𝜑 → 𝐴 ≈ ℕ) | ||
| Theorem | ennnfonelemnn0 12666* | Lemma for ennnfone 12669. A version of ennnfonelemen 12665 expressed in terms of ℕ0 instead of ω. (Contributed by Jim Kingdon, 27-Oct-2022.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) & ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝜑 → 𝐴 ≈ ℕ) | ||
| Theorem | ennnfonelemr 12667* | Lemma for ennnfone 12669. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:ℕ0–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝐹‘𝑘) ≠ (𝐹‘𝑗)) ⇒ ⊢ (𝜑 → 𝐴 ≈ ℕ) | ||
| Theorem | ennnfonelemim 12668* | Lemma for ennnfone 12669. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.) |
| ⊢ (𝐴 ≈ ℕ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0–onto→𝐴 ∧ ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝑓‘𝑘) ≠ (𝑓‘𝑗)))) | ||
| Theorem | ennnfone 12669* | A condition for a set being countably infinite. Corollary 8.1.13 of [AczelRathjen], p. 73. Roughly speaking, the condition says that 𝐴 is countable (that's the 𝑓:ℕ0–onto→𝐴 part, as seen in theorems like ctm 7184), infinite (that's the part about being able to find an element of 𝐴 distinct from any mapping of a natural number via 𝑓), and has decidable equality. (Contributed by Jim Kingdon, 27-Oct-2022.) |
| ⊢ (𝐴 ≈ ℕ ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0–onto→𝐴 ∧ ∀𝑛 ∈ ℕ0 ∃𝑘 ∈ ℕ0 ∀𝑗 ∈ (0...𝑛)(𝑓‘𝑘) ≠ (𝑓‘𝑗)))) | ||
| Theorem | exmidunben 12670* | If any unbounded set of positive integers is equinumerous to ℕ, then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.) |
| ⊢ ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID) | ||
| Theorem | ctinfomlemom 12671* | Lemma for ctinfom 12672. Converting between ω and ℕ0. (Contributed by Jim Kingdon, 10-Aug-2023.) |
| ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) & ⊢ 𝐺 = (𝐹 ∘ ◡𝑁) & ⊢ (𝜑 → 𝐹:ω–onto→𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹‘𝑘) ∈ (𝐹 “ 𝑛)) ⇒ ⊢ (𝜑 → (𝐺:ℕ0–onto→𝐴 ∧ ∀𝑚 ∈ ℕ0 ∃𝑗 ∈ ℕ0 ∀𝑖 ∈ (0...𝑚)(𝐺‘𝑗) ≠ (𝐺‘𝑖))) | ||
| Theorem | ctinfom 12672* | A condition for a set being countably infinite. Restates ennnfone 12669 in terms of ω and function image. Like ennnfone 12669 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.) |
| ⊢ (𝐴 ≈ ℕ ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto→𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓‘𝑘) ∈ (𝑓 “ 𝑛)))) | ||
| Theorem | inffinp1 12673* | An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → ω ≼ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
| Theorem | ctinf 12674* | A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.) |
| ⊢ (𝐴 ≈ ℕ ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto→𝐴 ∧ ω ≼ 𝐴)) | ||
| Theorem | qnnen 12675 | The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.) |
| ⊢ ℚ ≈ ℕ | ||
| Theorem | enctlem 12676* | Lemma for enct 12677. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.) |
| ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) | ||
| Theorem | enct 12677* | Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.) |
| ⊢ (𝐴 ≈ 𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))) | ||
| Theorem | ctiunctlemu1st 12678* | Lemma for ctiunct 12684. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| ⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ (𝜑 → 𝑁 ∈ 𝑈) ⇒ ⊢ (𝜑 → (1st ‘(𝐽‘𝑁)) ∈ 𝑆) | ||
| Theorem | ctiunctlemu2nd 12679* | Lemma for ctiunct 12684. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| ⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ (𝜑 → 𝑁 ∈ 𝑈) ⇒ ⊢ (𝜑 → (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) | ||
| Theorem | ctiunctlemuom 12680 | Lemma for ctiunct 12684. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| ⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} ⇒ ⊢ (𝜑 → 𝑈 ⊆ ω) | ||
| Theorem | ctiunctlemudc 12681* | Lemma for ctiunct 12684. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| ⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑈) | ||
| Theorem | ctiunctlemf 12682* | Lemma for ctiunct 12684. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| ⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ 𝐻 = (𝑛 ∈ 𝑈 ↦ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛)))) ⇒ ⊢ (𝜑 → 𝐻:𝑈⟶∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | ctiunctlemfo 12683* | Lemma for ctiunct 12684. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| ⊢ (𝜑 → 𝑆 ⊆ ω) & ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) & ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) & ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) & ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} & ⊢ 𝐻 = (𝑛 ∈ 𝑈 ↦ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛)))) & ⊢ Ⅎ𝑥𝐻 & ⊢ Ⅎ𝑥𝑈 ⇒ ⊢ (𝜑 → 𝐻:𝑈–onto→∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | ctiunct 12684* |
A sequence of enumerations gives an enumeration of the union. We refer
to "sequence of enumerations" rather than "countably many
countable
sets" because the hypothesis provides more than countability for
each
𝐵(𝑥): it refers to 𝐵(𝑥) together with the 𝐺(𝑥)
which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.
For "countably many countable sets" the key hypothesis would be (𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑔𝑔:ω–onto→(𝐵 ⊔ 1o). This is almost omiunct 12688 (which uses countable choice) although that is for a countably infinite collection not any countable collection. Compare with the case of two sets instead of countably many, as seen at unct 12686, which says that the union of two countable sets is countable . The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12639) and using the first number to map to an element 𝑥 of 𝐴 and the second number to map to an element of B(x) . In this way we are able to map to every element of ∪ 𝑥 ∈ 𝐴𝐵. Although it would be possible to work directly with countability expressed as 𝐹:ω–onto→(𝐴 ⊔ 1o), we instead use functions from subsets of the natural numbers via ctssdccl 7186 and ctssdc 7188. (Contributed by Jim Kingdon, 31-Oct-2023.) |
| ⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o)) ⇒ ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) | ||
| Theorem | ctiunctal 12685* | Variation of ctiunct 12684 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.) |
| ⊢ (𝜑 → 𝐹:ω–onto→(𝐴 ⊔ 1o)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o)) ⇒ ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ 𝐴 𝐵 ⊔ 1o)) | ||
| Theorem | unct 12686* | The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.) |
| ⊢ ((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ℎ ℎ:ω–onto→((𝐴 ∪ 𝐵) ⊔ 1o)) | ||
| Theorem | omctfn 12687* | Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.) |
| ⊢ (𝜑 → CCHOICE) & ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓‘𝑥):ω–onto→(𝐵 ⊔ 1o))) | ||
| Theorem | omiunct 12688* | The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12684 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.) |
| ⊢ (𝜑 → CCHOICE) & ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) ⇒ ⊢ (𝜑 → ∃ℎ ℎ:ω–onto→(∪ 𝑥 ∈ ω 𝐵 ⊔ 1o)) | ||
| Theorem | ssomct 12689* | A decidable subset of ω is countable. (Contributed by Jim Kingdon, 19-Sep-2024.) |
| ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | ||
| Theorem | ssnnctlemct 12690* | Lemma for ssnnct 12691. The result. (Contributed by Jim Kingdon, 29-Sep-2024.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1) ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | ||
| Theorem | ssnnct 12691* | A decidable subset of ℕ is countable. (Contributed by Jim Kingdon, 29-Sep-2024.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)) | ||
| Theorem | nninfdclemcl 12692* | Lemma for nninfdc 12697. (Contributed by Jim Kingdon, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴) | ||
| Theorem | nninfdclemf 12693* | Lemma for nninfdc 12697. A function from the natural numbers into 𝐴. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) & ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) | ||
| Theorem | nninfdclemp1 12694* | Lemma for nninfdc 12697. Each element of the sequence 𝐹 is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) & ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) & ⊢ (𝜑 → 𝑈 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑈 + 1))) | ||
| Theorem | nninfdclemlt 12695* | Lemma for nninfdc 12697. The function from nninfdclemf 12693 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) & ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) & ⊢ (𝜑 → 𝑈 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ ℕ) & ⊢ (𝜑 → 𝑈 < 𝑉) ⇒ ⊢ (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑉)) | ||
| Theorem | nninfdclemf1 12696* | Lemma for nninfdc 12697. The function from nninfdclemf 12693 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) & ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) & ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) ⇒ ⊢ (𝜑 → 𝐹:ℕ–1-1→𝐴) | ||
| Theorem | nninfdc 12697* | An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ω ≼ 𝐴) | ||
| Theorem | unbendc 12698* | An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ) | ||
| Theorem | prminf 12699 | There are an infinite number of primes. Theorem 1.7 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 28-Nov-2012.) |
| ⊢ ℙ ≈ ℕ | ||
| Theorem | infpn2 12700* | There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12557, so by unbendc 12698 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.) |
| ⊢ 𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))} ⇒ ⊢ 𝑆 ≈ ℕ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |