HomeHome Intuitionistic Logic Explorer
Theorem List (p. 127 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12601-12700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem4sqlem17 12601* Lemma for 4sq 12604. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 = ((2 · 𝑁) + 1))    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)    &   𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}    &   𝑀 = inf(𝑇, ℝ, < )    &   (𝜑𝑀 ∈ (ℤ‘2))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℤ)    &   𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)    &   (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))        ¬ 𝜑
 
Theorem4sqlem18 12602* Lemma for 4sq 12604. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃 = ((2 · 𝑁) + 1))    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)    &   𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}    &   𝑀 = inf(𝑇, ℝ, < )       (𝜑𝑃𝑆)
 
Theorem4sqlem19 12603* Lemma for 4sq 12604. The proof is by strong induction - we show that if all the integers less than 𝑘 are in 𝑆, then 𝑘 is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 12602. If 𝑘 is 0, 1, 2, we show 𝑘𝑆 directly; otherwise if 𝑘 is composite, 𝑘 is the product of two numbers less than it (and hence in 𝑆 by assumption), so by mul4sq 12588 𝑘𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}       0 = 𝑆
 
Theorem4sq 12604* Lagrange's four-square theorem, or Bachet's conjecture: every nonnegative integer is expressible as a sum of four squares. This is Metamath 100 proof #19. (Contributed by Mario Carneiro, 16-Jul-2014.)
(𝐴 ∈ ℕ0 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
 
5.2.13  Decimal arithmetic (cont.)
 
Theoremdec2dvds 12605 Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 · 2) = 𝐶    &   𝐷 = (𝐶 + 1)        ¬ 2 ∥ 𝐴𝐷
 
Theoremdec5dvds 12606 Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ    &   𝐵 < 5        ¬ 5 ∥ 𝐴𝐵
 
Theoremdec5dvds2 12607 Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ    &   𝐵 < 5    &   (5 + 𝐵) = 𝐶        ¬ 5 ∥ 𝐴𝐶
 
Theoremdec5nprm 12608 A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ        ¬ 𝐴5 ∈ ℙ
 
Theoremdec2nprm 12609 A decimal number greater than 10 and ending with an even digit is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   (𝐵 · 2) = 𝐶        ¬ 𝐴𝐶 ∈ ℙ
 
Theoremmodxai 12610 Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.)
𝑁 ∈ ℕ    &   𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐷 ∈ ℤ    &   𝐾 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐿 ∈ ℕ0    &   ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)    &   ((𝐴𝐶) mod 𝑁) = (𝐿 mod 𝑁)    &   (𝐵 + 𝐶) = 𝐸    &   ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿)       ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
 
Theoremmod2xi 12611 Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.)
𝑁 ∈ ℕ    &   𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐷 ∈ ℤ    &   𝐾 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)    &   (2 · 𝐵) = 𝐸    &   ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)       ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
 
Theoremmodxp1i 12612 Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.)
𝑁 ∈ ℕ    &   𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐷 ∈ ℤ    &   𝐾 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)    &   (𝐵 + 1) = 𝐸    &   ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴)       ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
 
Theoremmodsubi 12613 Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑁 ∈ ℕ    &   𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   (𝐴 mod 𝑁) = (𝐾 mod 𝑁)    &   (𝑀 + 𝐵) = 𝐾       ((𝐴𝐵) mod 𝑁) = (𝑀 mod 𝑁)
 
Theoremgcdi 12614 Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.)
𝐾 ∈ ℕ0    &   𝑅 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   (𝑁 gcd 𝑅) = 𝐺    &   ((𝐾 · 𝑁) + 𝑅) = 𝑀       (𝑀 gcd 𝑁) = 𝐺
 
Theoremgcdmodi 12615 Calculate a GCD via Euclid's algorithm. Theorem 5.6 in [ApostolNT] p. 109. (Contributed by Mario Carneiro, 19-Feb-2014.)
𝐾 ∈ ℕ0    &   𝑅 ∈ ℕ0    &   𝑁 ∈ ℕ    &   (𝐾 mod 𝑁) = (𝑅 mod 𝑁)    &   (𝑁 gcd 𝑅) = 𝐺       (𝐾 gcd 𝑁) = 𝐺
 
Theoremnumexp0 12616 Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 ∈ ℕ0       (𝐴↑0) = 1
 
Theoremnumexp1 12617 Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 ∈ ℕ0       (𝐴↑1) = 𝐴
 
Theoremnumexpp1 12618 Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   (𝑀 + 1) = 𝑁    &   ((𝐴𝑀) · 𝐴) = 𝐶       (𝐴𝑁) = 𝐶
 
Theoremnumexp2x 12619 Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   (2 · 𝑀) = 𝑁    &   (𝐴𝑀) = 𝐷    &   (𝐷 · 𝐷) = 𝐶       (𝐴𝑁) = 𝐶
 
Theoremdecsplit0b 12620 Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0       ((𝐴 · (10↑0)) + 𝐵) = (𝐴 + 𝐵)
 
Theoremdecsplit0 12621 Split a decimal number into two parts. Base case: 𝑁 = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0       ((𝐴 · (10↑0)) + 0) = 𝐴
 
Theoremdecsplit1 12622 Split a decimal number into two parts. Base case: 𝑁 = 1. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0       ((𝐴 · (10↑1)) + 𝐵) = 𝐴𝐵
 
Theoremdecsplit 12623 Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   (𝑀 + 1) = 𝑁    &   ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶       ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷
 
Theoremkaratsuba 12624 The Karatsuba multiplication algorithm. If 𝑋 and 𝑌 are decomposed into two groups of digits of length 𝑀 (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then 𝑋𝑌 can be written in three groups of digits, where each group needs only one multiplication. Thus, we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 9538. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 9-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑆 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   (𝐴 · 𝐶) = 𝑅    &   (𝐵 · 𝐷) = 𝑇    &   ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇)    &   ((𝐴 · (10↑𝑀)) + 𝐵) = 𝑋    &   ((𝐶 · (10↑𝑀)) + 𝐷) = 𝑌    &   ((𝑅 · (10↑𝑀)) + 𝑆) = 𝑊    &   ((𝑊 · (10↑𝑀)) + 𝑇) = 𝑍       (𝑋 · 𝑌) = 𝑍
 
Theorem2exp4 12625 Two to the fourth power is 16. (Contributed by Mario Carneiro, 20-Apr-2015.)
(2↑4) = 16
 
Theorem2exp5 12626 Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.)
(2↑5) = 32
 
Theorem2exp6 12627 Two to the sixth power is 64. (Contributed by Mario Carneiro, 20-Apr-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
(2↑6) = 64
 
Theorem2exp7 12628 Two to the seventh power is 128. (Contributed by AV, 16-Aug-2021.)
(2↑7) = 128
 
Theorem2exp8 12629 Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.)
(2↑8) = 256
 
Theorem2exp11 12630 Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.)
(2↑11) = 2048
 
Theorem2exp16 12631 Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.)
(2↑16) = 65536
 
Theorem3exp3 12632 Three to the third power is 27. (Contributed by Mario Carneiro, 20-Apr-2015.)
(3↑3) = 27
 
Theorem2expltfac 12633 The factorial grows faster than two to the power 𝑁. (Contributed by Mario Carneiro, 15-Sep-2016.)
(𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))
 
5.3  Cardinality of real and complex number subsets
 
5.3.1  Countability of integers and rationals
 
Theoremoddennn 12634 There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
{𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
 
Theoremevenennn 12635 There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.)
{𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ
 
Theoremxpnnen 12636 The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.)
(ℕ × ℕ) ≈ ℕ
 
Theoremxpomen 12637 The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.)
(ω × ω) ≈ ω
 
Theoremxpct 12638 The cartesian product of two sets dominated by ω is dominated by ω. (Contributed by Thierry Arnoux, 24-Sep-2017.)
((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω)
 
Theoremunennn 12639 The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ℕ)
 
Theoremznnen 12640 The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
ℤ ≈ ℕ
 
Theoremennnfonelemdc 12641* Lemma for ennnfone 12667. A direct consequence of fidcenumlemrk 7029. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑𝑃 ∈ ω)       (𝜑DECID (𝐹𝑃) ∈ (𝐹𝑃))
 
Theoremennnfonelemk 12642* Lemma for ennnfone 12667. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑𝐹:ω–onto𝐴)    &   (𝜑𝐾 ∈ ω)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹𝐾) ≠ (𝐹𝑗))       (𝜑𝑁𝐾)
 
Theoremennnfonelemj0 12643* Lemma for ennnfone 12667. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
 
Theoremennnfonelemjn 12644* Lemma for ennnfone 12667. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
 
Theoremennnfonelemg 12645* Lemma for ennnfone 12667. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
 
Theoremennnfonelemh 12646* Lemma for ennnfone 12667. (Contributed by Jim Kingdon, 8-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑𝐻:ℕ0⟶(𝐴pm ω))
 
Theoremennnfonelem0 12647* Lemma for ennnfone 12667. Initial value. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑 → (𝐻‘0) = ∅)
 
Theoremennnfonelemp1 12648* Lemma for ennnfone 12667. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
 
Theoremennnfonelem1 12649* Lemma for ennnfone 12667. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
 
Theoremennnfonelemom 12650* Lemma for ennnfone 12667. 𝐻 yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → dom (𝐻𝑃) ∈ ω)
 
Theoremennnfonelemhdmp1 12651* Lemma for ennnfone 12667. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)    &   (𝜑 → ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))       (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻𝑃))
 
Theoremennnfonelemss 12652* Lemma for ennnfone 12667. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑃 + 1)))
 
Theoremennnfoneleminc 12653* Lemma for ennnfone 12667. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)    &   (𝜑𝑄 ∈ ℕ0)    &   (𝜑𝑃𝑄)       (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))
 
Theoremennnfonelemkh 12654* Lemma for ennnfone 12667. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
 
Theoremennnfonelemhf1o 12655* Lemma for ennnfone 12667. Each of the functions in 𝐻 is one to one and onto an image of 𝐹. (Contributed by Jim Kingdon, 17-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))
 
Theoremennnfonelemex 12656* Lemma for ennnfone 12667. Extending the sequence (𝐻𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
 
Theoremennnfonelemhom 12657* Lemma for ennnfone 12667. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑀 ∈ ω)       (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
 
Theoremennnfonelemrnh 12658* Lemma for ennnfone 12667. A consequence of ennnfonelemss 12652. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑋 ∈ ran 𝐻)    &   (𝜑𝑌 ∈ ran 𝐻)       (𝜑 → (𝑋𝑌𝑌𝑋))
 
Theoremennnfonelemfun 12659* Lemma for ennnfone 12667. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑 → Fun 𝐿)
 
Theoremennnfonelemf1 12660* Lemma for ennnfone 12667. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑𝐿:dom 𝐿1-1𝐴)
 
Theoremennnfonelemrn 12661* Lemma for ennnfone 12667. 𝐿 is onto 𝐴. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑 → ran 𝐿 = 𝐴)
 
Theoremennnfonelemdm 12662* Lemma for ennnfone 12667. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑 → dom 𝐿 = ω)
 
Theoremennnfonelemen 12663* Lemma for ennnfone 12667. The result. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑𝐴 ≈ ℕ)
 
Theoremennnfonelemnn0 12664* Lemma for ennnfone 12667. A version of ennnfonelemen 12663 expressed in terms of 0 instead of ω. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ℕ0onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝜑𝐴 ≈ ℕ)
 
Theoremennnfonelemr 12665* Lemma for ennnfone 12667. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ℕ0onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))       (𝜑𝐴 ≈ ℕ)
 
Theoremennnfonelemim 12666* Lemma for ennnfone 12667. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
 
Theoremennnfone 12667* A condition for a set being countably infinite. Corollary 8.1.13 of [AczelRathjen], p. 73. Roughly speaking, the condition says that 𝐴 is countable (that's the 𝑓:ℕ0onto𝐴 part, as seen in theorems like ctm 7184), infinite (that's the part about being able to find an element of 𝐴 distinct from any mapping of a natural number via 𝑓), and has decidable equality. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
 
Theoremexmidunben 12668* If any unbounded set of positive integers is equinumerous to , then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
 
Theoremctinfomlemom 12669* Lemma for ctinfom 12670. Converting between ω and 0. (Contributed by Jim Kingdon, 10-Aug-2023.)
𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐺 = (𝐹𝑁)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))       (𝜑 → (𝐺:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖)))
 
Theoremctinfom 12670* A condition for a set being countably infinite. Restates ennnfone 12667 in terms of ω and function image. Like ennnfone 12667 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
(𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
 
Theoreminffinp1 12671* An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑 → ω ≼ 𝐴)    &   (𝜑𝐵𝐴)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → ∃𝑥𝐴 ¬ 𝑥𝐵)
 
Theoremctinf 12672* A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
(𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
 
Theoremqnnen 12673 The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
ℚ ≈ ℕ
 
Theoremenctlem 12674* Lemma for enct 12675. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
(𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
 
Theoremenct 12675* Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.)
(𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
 
Theoremctiunctlemu1st 12676* Lemma for ctiunct 12682. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   (𝜑𝑁𝑈)       (𝜑 → (1st ‘(𝐽𝑁)) ∈ 𝑆)
 
Theoremctiunctlemu2nd 12677* Lemma for ctiunct 12682. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   (𝜑𝑁𝑈)       (𝜑 → (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇)
 
Theoremctiunctlemuom 12678 Lemma for ctiunct 12682. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}       (𝜑𝑈 ⊆ ω)
 
Theoremctiunctlemudc 12679* Lemma for ctiunct 12682. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}       (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑈)
 
Theoremctiunctlemf 12680* Lemma for ctiunct 12682. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))       (𝜑𝐻:𝑈 𝑥𝐴 𝐵)
 
Theoremctiunctlemfo 12681* Lemma for ctiunct 12682. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))    &   𝑥𝐻    &   𝑥𝑈       (𝜑𝐻:𝑈onto 𝑥𝐴 𝐵)
 
Theoremctiunct 12682* A sequence of enumerations gives an enumeration of the union. We refer to "sequence of enumerations" rather than "countably many countable sets" because the hypothesis provides more than countability for each 𝐵(𝑥): it refers to 𝐵(𝑥) together with the 𝐺(𝑥) which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.

For "countably many countable sets" the key hypothesis would be (𝜑𝑥𝐴) → ∃𝑔𝑔:ω–onto→(𝐵 ⊔ 1o). This is almost omiunct 12686 (which uses countable choice) although that is for a countably infinite collection not any countable collection.

Compare with the case of two sets instead of countably many, as seen at unct 12684, which says that the union of two countable sets is countable .

The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12637) and using the first number to map to an element 𝑥 of 𝐴 and the second number to map to an element of B(x) . In this way we are able to map to every element of 𝑥𝐴𝐵. Although it would be possible to work directly with countability expressed as 𝐹:ω–onto→(𝐴 ⊔ 1o), we instead use functions from subsets of the natural numbers via ctssdccl 7186 and ctssdc 7188.

(Contributed by Jim Kingdon, 31-Oct-2023.)

(𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))    &   ((𝜑𝑥𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
 
Theoremctiunctal 12683* Variation of ctiunct 12682 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.)
(𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))    &   (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
 
Theoremunct 12684* The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
 
Theoremomctfn 12685* Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
(𝜑CCHOICE)    &   ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
 
Theoremomiunct 12686* The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12682 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.)
(𝜑CCHOICE)    &   ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
 
Theoremssomct 12687* A decidable subset of ω is countable. (Contributed by Jim Kingdon, 19-Sep-2024.)
((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
 
Theoremssnnctlemct 12688* Lemma for ssnnct 12689. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)       ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
 
Theoremssnnct 12689* A decidable subset of is countable. (Contributed by Jim Kingdon, 29-Sep-2024.)
((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
 
Theoremnninfdclemcl 12690* Lemma for nninfdc 12695. (Contributed by Jim Kingdon, 25-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑𝑃𝐴)    &   (𝜑𝑄𝐴)       (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
 
Theoremnninfdclemf 12691* Lemma for nninfdc 12695. A function from the natural numbers into 𝐴. (Contributed by Jim Kingdon, 23-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))    &   𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))       (𝜑𝐹:ℕ⟶𝐴)
 
Theoremnninfdclemp1 12692* Lemma for nninfdc 12695. Each element of the sequence 𝐹 is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))    &   𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))    &   (𝜑𝑈 ∈ ℕ)       (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
 
Theoremnninfdclemlt 12693* Lemma for nninfdc 12695. The function from nninfdclemf 12691 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))    &   𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))    &   (𝜑𝑈 ∈ ℕ)    &   (𝜑𝑉 ∈ ℕ)    &   (𝜑𝑈 < 𝑉)       (𝜑 → (𝐹𝑈) < (𝐹𝑉))
 
Theoremnninfdclemf1 12694* Lemma for nninfdc 12695. The function from nninfdclemf 12691 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))    &   𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))       (𝜑𝐹:ℕ–1-1𝐴)
 
Theoremnninfdc 12695* An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
 
Theoremunbendc 12696* An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.)
((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ)
 
Theoremprminf 12697 There are an infinite number of primes. Theorem 1.7 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 28-Nov-2012.)
ℙ ≈ ℕ
 
Theoreminfpn2 12698* There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12555, so by unbendc 12696 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}       𝑆 ≈ ℕ
 
PART 6  BASIC STRUCTURES
 
6.1  Extensible structures
 
6.1.1  Basic definitions

An "extensible structure" (or "structure" in short, at least in this section) is used to define a specific group, ring, poset, and so on. An extensible structure can contain many components. For example, a group will have at least two components (base set and operation), although it can be further specialized by adding other components such as a multiplicative operation for rings (and still remain a group per our definition). Thus, every ring is also a group. This extensible structure approach allows theorems from more general structures (such as groups) to be reused for more specialized structures (such as rings) without having to reprove anything. Structures are common in mathematics, but in informal (natural language) proofs the details are assumed in ways that we must make explicit.

An extensible structure is implemented as a function (a set of ordered pairs) on a finite (and not necessarily sequential) subset of . The function's argument is the index of a structure component (such as 1 for the base set of a group), and its value is the component (such as the base set). By convention, we normally avoid direct reference to the hard-coded numeric index and instead use structure component extractors such as ndxid 12727 and strslfv 12748. Using extractors makes it easier to change numeric indices and also makes the components' purpose clearer. See the comment of basendx 12758 for more details on numeric indices versus the structure component extractors.

There are many other possible ways to handle structures. We chose this extensible structure approach because this approach (1) results in simpler notation than other approaches we are aware of, and (2) is easier to do proofs with. We cannot use an approach that uses "hidden" arguments; Metamath does not support hidden arguments, and in any case we want nothing hidden. It would be possible to use a categorical approach (e.g., something vaguely similar to Lean's mathlib). However, instances (the chain of proofs that an 𝑋 is a 𝑌 via a bunch of forgetful functors) can cause serious performance problems for automated tooling, and the resulting proofs would be painful to look at directly (in the case of Lean, they are long past the level where people would find it acceptable to look at them directly). Metamath is working under much stricter conditions than this, and it has still managed to achieve about the same level of flexibility through this "extensible structure" approach.

To create a substructure of a given extensible structure, you can simply use the multifunction restriction operator for extensible structures s as defined in df-iress 12711. This can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone. Individual kinds of structures will need to handle this behavior by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

Extensible structures only work well when they represent concrete categories, where there is a "base set", morphisms are functions, and subobjects are subsets with induced operations. In short, they primarily work well for "sets with (some) extra structure". Extensible structures may not suffice for more complicated situations. For example, in manifolds, s would not work. That said, extensible structures are sufficient for many of the structures that set.mm currently considers, and offer a good compromise for a goal-oriented formalization.

 
Syntaxcstr 12699 Extend class notation with the class of structures with components numbered below 𝐴.
class Struct
 
Syntaxcnx 12700 Extend class notation with the structure component index extractor.
class ndx
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >