HomeHome Intuitionistic Logic Explorer
Theorem List (p. 127 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12601-12700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremprmex 12601 The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
ℙ ∈ V
 
Theorem1nprm 12602 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
¬ 1 ∈ ℙ
 
Theorem1idssfct 12603* The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
 
Theoremisprm2lem 12604* Lemma for isprm2 12605. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
 
Theoremisprm2 12605* The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
(𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
 
Theoremisprm3 12606* The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
(𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
 
Theoremisprm4 12607* The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.)
(𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)))
 
Theoremprmind2 12608* A variation on prmind 12609 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.)
(𝑥 = 1 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = 𝑧 → (𝜑𝜃))    &   (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))    &   (𝑥 = 𝐴 → (𝜑𝜂))    &   𝜓    &   ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑)    &   ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))       (𝐴 ∈ ℕ → 𝜂)
 
Theoremprmind 12609* Perform induction over the multiplicative structure of . If a property 𝜑(𝑥) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015.)
(𝑥 = 1 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = 𝑧 → (𝜑𝜃))    &   (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))    &   (𝑥 = 𝐴 → (𝜑𝜂))    &   𝜓    &   (𝑥 ∈ ℙ → 𝜑)    &   ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))       (𝐴 ∈ ℕ → 𝜂)
 
Theoremdvdsprime 12610 If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.)
((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀𝑃 ↔ (𝑀 = 𝑃𝑀 = 1)))
 
Theoremnprm 12611 A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.)
((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ)
 
Theoremnprmi 12612 An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ    &   1 < 𝐴    &   1 < 𝐵    &   (𝐴 · 𝐵) = 𝑁        ¬ 𝑁 ∈ ℙ
 
Theoremdvdsnprmd 12613 If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
(𝜑 → 1 < 𝐴)    &   (𝜑𝐴 < 𝑁)    &   (𝜑𝐴𝑁)       (𝜑 → ¬ 𝑁 ∈ ℙ)
 
Theoremprm2orodd 12614 A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021.)
(𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃))
 
Theorem2prm 12615 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.)
2 ∈ ℙ
 
Theorem3prm 12616 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.)
3 ∈ ℙ
 
Theorem4nprm 12617 4 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 18-Feb-2014.)
¬ 4 ∈ ℙ
 
Theoremprmdc 12618 Primality is decidable. (Contributed by Jim Kingdon, 30-Sep-2024.)
(𝑁 ∈ ℕ → DECID 𝑁 ∈ ℙ)
 
Theoremprmuz2 12619 A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
 
Theoremprmgt1 12620 A prime number is an integer greater than 1. (Contributed by Alexander van der Vekens, 17-May-2018.)
(𝑃 ∈ ℙ → 1 < 𝑃)
 
Theoremprmm2nn0 12621 Subtracting 2 from a prime number results in a nonnegative integer. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
(𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
 
Theoremoddprmgt2 12622 An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021.)
(𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
 
Theoremoddprmge3 12623 An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 20-Aug-2021.)
(𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
 
Theoremsqnprm 12624 A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.)
(𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ)
 
Theoremdvdsprm 12625 An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012.)
((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (𝑁𝑃𝑁 = 𝑃))
 
Theoremexprmfct 12626* Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
(𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
 
Theoremprmdvdsfz 12627* Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020.)
((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼))
 
Theoremnprmdvds1 12628 No prime number divides 1. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 2-Jul-2015.)
(𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
 
Theoremisprm5lem 12629* Lemma for isprm5 12630. The interesting direction (showing that one only needs to check prime divisors up to the square root of 𝑃). (Contributed by Jim Kingdon, 20-Oct-2024.)
(𝜑𝑃 ∈ (ℤ‘2))    &   (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))    &   (𝜑𝑋 ∈ (2...(𝑃 − 1)))       (𝜑 → ¬ 𝑋𝑃)
 
Theoremisprm5 12630* One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
(𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
 
Theoremdivgcdodd 12631 Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
 
5.2.2  Coprimality and Euclid's lemma (cont.)

This section is about coprimality with respect to primes, and a special version of Euclid's lemma for primes is provided, see euclemma 12634.

 
Theoremcoprm 12632 A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
 
Theoremprmrp 12633 Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014.)
((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
 
Theoremeuclemma 12634 Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 17-Nov-2012.)
((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃𝑀𝑃𝑁)))
 
Theoremisprm6 12635* A number is prime iff it satisfies Euclid's lemma euclemma 12634. (Contributed by Mario Carneiro, 6-Sep-2015.)
(𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃𝑥𝑃𝑦))))
 
Theoremprmdvdsexp 12636 A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.)
((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
 
Theoremprmdvdsexpb 12637 A prime divides a positive power of another iff they are equal. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 24-Feb-2014.)
((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄𝑁) ↔ 𝑃 = 𝑄))
 
Theoremprmdvdsexpr 12638 If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.)
((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄𝑁) → 𝑃 = 𝑄))
 
Theoremprmexpb 12639 Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.)
(((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (𝑄𝑁) ↔ (𝑃 = 𝑄𝑀 = 𝑁)))
 
Theoremprmfac1 12640 The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
((𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃𝑁)
 
Theoremrpexp 12641 If two numbers 𝐴 and 𝐵 are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
 
Theoremrpexp1i 12642 Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd 𝐵) = 1))
 
Theoremrpexp12i 12643 Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑀) gcd (𝐵𝑁)) = 1))
 
Theoremprmndvdsfaclt 12644 A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021.)
((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → ¬ 𝑃 ∥ (!‘𝑁)))
 
Theoremcncongrprm 12645 Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃)))
 
Theoremisevengcd2 12646 The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.)
(𝑍 ∈ ℤ → (2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 2))
 
Theoremisoddgcd1 12647 The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.)
(𝑍 ∈ ℤ → (¬ 2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 1))
 
Theorem3lcm2e6 12648 The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.)
(3 lcm 2) = 6
 
5.2.3  Non-rationality of square root of 2
 
Theoremsqrt2irrlem 12649 Lemma for sqrt2irr 12650. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑 → (√‘2) = (𝐴 / 𝐵))       (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
 
Theoremsqrt2irr 12650 The square root of 2 is not rational. That is, for any rational number, (√‘2) does not equal it. However, if we were to say "the square root of 2 is irrational" that would mean something stronger: "for any rational number, (√‘2) is apart from it" (the two statements are equivalent given excluded middle). See sqrt2irrap 12668 for the proof that the square root of two is irrational.

The proof's core is proven in sqrt2irrlem 12649, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)

(√‘2) ∉ ℚ
 
Theoremsqrt2re 12651 The square root of 2 exists and is a real number. (Contributed by NM, 3-Dec-2004.)
(√‘2) ∈ ℝ
 
Theoremsqrt2irr0 12652 The square root of 2 is not rational. (Contributed by AV, 23-Dec-2022.)
(√‘2) ∈ (ℝ ∖ ℚ)
 
Theorempw2dvdslemn 12653* Lemma for pw2dvds 12654. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
 
Theorempw2dvds 12654* A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.)
(𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
 
Theorempw2dvdseulemle 12655 Lemma for pw2dvdseu 12656. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)    &   (𝜑 → (2↑𝐴) ∥ 𝑁)    &   (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁)       (𝜑𝐴𝐵)
 
Theorempw2dvdseu 12656* A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
(𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
 
Theoremoddpwdclemxy 12657* Lemma for oddpwdc 12662. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
 
Theoremoddpwdclemdvds 12658* Lemma for oddpwdc 12662. A natural number is divisible by the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.)
(𝐴 ∈ ℕ → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴)
 
Theoremoddpwdclemndvds 12659* Lemma for oddpwdc 12662. A natural number is not divisible by one more than the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.)
(𝐴 ∈ ℕ → ¬ (2↑((𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴)
 
Theoremoddpwdclemodd 12660* Lemma for oddpwdc 12662. Removing the powers of two from a natural number produces an odd number. (Contributed by Jim Kingdon, 16-Nov-2021.)
(𝐴 ∈ ℕ → ¬ 2 ∥ (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))
 
Theoremoddpwdclemdc 12661* Lemma for oddpwdc 12662. Decomposing a number into odd and even parts. (Contributed by Jim Kingdon, 16-Nov-2021.)
((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) ↔ (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))
 
Theoremoddpwdc 12662* The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
 
Theoremsqpweven 12663* The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(𝐹‘(𝐴↑2))))
 
Theorem2sqpwodd 12664* The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(𝐹‘(2 · (𝐴↑2)))))
 
Theoremsqne2sq 12665 The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
 
Theoremznege1 12666 The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → 1 ≤ (abs‘(𝐴𝐵)))
 
Theoremsqrt2irraplemnn 12667 Lemma for sqrt2irrap 12668. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))
 
Theoremsqrt2irrap 12668 The square root of 2 is irrational. That is, for any rational number, (√‘2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 12650. (Contributed by Jim Kingdon, 2-Oct-2021.)
(𝑄 ∈ ℚ → (√‘2) # 𝑄)
 
5.2.4  Properties of the canonical representation of a rational
 
Syntaxcnumer 12669 Extend class notation to include canonical numerator function.
class numer
 
Syntaxcdenom 12670 Extend class notation to include canonical denominator function.
class denom
 
Definitiondf-numer 12671* The canonical numerator of a rational is the numerator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.)
numer = (𝑦 ∈ ℚ ↦ (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
 
Definitiondf-denom 12672* The canonical denominator of a rational is the denominator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.)
denom = (𝑦 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
 
Theoremqnumval 12673* Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
 
Theoremqdenval 12674* Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
 
Theoremqnumdencl 12675 Lemma for qnumcl 12676 and qdencl 12677. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))
 
Theoremqnumcl 12676 The canonical numerator of a rational is an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ)
 
Theoremqdencl 12677 The canonical denominator is a positive integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ)
 
Theoremfnum 12678 Canonical numerator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
numer:ℚ⟶ℤ
 
Theoremfden 12679 Canonical denominator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
denom:ℚ⟶ℕ
 
Theoremqnumdenbi 12680 Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))
 
Theoremqnumdencoprm 12681 The canonical representation of a rational is fully reduced. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
 
Theoremqeqnumdivden 12682 Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
 
Theoremqmuldeneqnum 12683 Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (numer‘𝐴))
 
Theoremdivnumden 12684 Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))
 
Theoremdivdenle 12685 Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵)
 
Theoremqnumgt0 12686 A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → (0 < 𝐴 ↔ 0 < (numer‘𝐴)))
 
Theoremqgt0numnn 12687 A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014.)
((𝐴 ∈ ℚ ∧ 0 < 𝐴) → (numer‘𝐴) ∈ ℕ)
 
Theoremnn0gcdsq 12688 Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
 
Theoremzgcdsq 12689 nn0gcdsq 12688 extended to integers by symmetry. (Contributed by Stefan O'Rear, 15-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
 
Theoremnumdensq 12690 Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))
 
Theoremnumsq 12691 Square commutes with canonical numerator. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → (numer‘(𝐴↑2)) = ((numer‘𝐴)↑2))
 
Theoremdensq 12692 Square commutes with canonical denominator. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))
 
Theoremqden1elz 12693 A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ))
 
Theoremnn0sqrtelqelz 12694 If a nonnegative integer has a rational square root, that root must be an integer. (Contributed by Jim Kingdon, 24-May-2022.)
((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ)
 
Theoremnonsq 12695 Any integer strictly between two adjacent squares has a non-rational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ)
 
5.2.5  Euler's theorem
 
Syntaxcodz 12696 Extend class notation with the order function on the class of integers modulo N.
class od
 
Syntaxcphi 12697 Extend class notation with the Euler phi function.
class ϕ
 
Definitiondf-odz 12698* Define the order function on the class of integers modulo N. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
od = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥𝑚) − 1)}, ℝ, < )))
 
Definitiondf-phi 12699* Define the Euler phi function (also called "Euler totient function"), which counts the number of integers less than 𝑛 and coprime to it, see definition in [ApostolNT] p. 25. (Contributed by Mario Carneiro, 23-Feb-2014.)
ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}))
 
Theoremphivalfi 12700* Finiteness of an expression used to define the Euler ϕ function. (Contributed by Jim Kingon, 28-May-2022.)
(𝑁 ∈ ℕ → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >