![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tsetndx | GIF version |
Description: Index value of the df-tset 12717 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
tsetndx | ⊢ (TopSet‘ndx) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tset 12717 | . 2 ⊢ TopSet = Slot 9 | |
2 | 9nn 9153 | . 2 ⊢ 9 ∈ ℕ | |
3 | 1, 2 | ndxarg 12644 | 1 ⊢ (TopSet‘ndx) = 9 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ‘cfv 5255 9c9 9042 ndxcnx 12618 TopSetcts 12704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-ndx 12624 df-slot 12625 df-tset 12717 |
This theorem is referenced by: tsetndxnn 12809 basendxlttsetndx 12810 tsetndxnplusgndx 12812 tsetndxnmulrndx 12813 tsetndxnstarvndx 12814 slotstnscsi 12815 topgrpstrd 12816 slotsdifplendx 12830 dsndxntsetndx 12840 unifndxntsetndx 12847 cnfldstr 14057 psrvalstrd 14165 setsmsbasg 14658 setsmsdsg 14659 |
Copyright terms: Public domain | W3C validator |