ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tsetndx GIF version

Theorem tsetndx 13214
Description: Index value of the df-tset 13124 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
tsetndx (TopSet‘ndx) = 9

Proof of Theorem tsetndx
StepHypRef Expression
1 df-tset 13124 . 2 TopSet = Slot 9
2 9nn 9275 . 2 9 ∈ ℕ
31, 2ndxarg 13050 1 (TopSet‘ndx) = 9
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cfv 5317  9c9 9164  ndxcnx 13024  TopSetcts 13111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-ndx 13030  df-slot 13031  df-tset 13124
This theorem is referenced by:  tsetndxnn  13217  basendxlttsetndx  13218  tsetndxnplusgndx  13220  tsetndxnmulrndx  13221  tsetndxnstarvndx  13222  slotstnscsi  13223  topgrpstrd  13224  slotsdifplendx  13238  dsndxntsetndx  13252  unifndxntsetndx  13259  imasvalstrd  13298  cnfldstr  14516  psrvalstrd  14626  setsmsbasg  15147  setsmsdsg  15148
  Copyright terms: Public domain W3C validator