| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tsetslid | GIF version | ||
| Description: Slot property of TopSet. (Contributed by Jim Kingdon, 9-Feb-2023.) |
| Ref | Expression |
|---|---|
| tsetslid | ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tset 12799 | . 2 ⊢ TopSet = Slot 9 | |
| 2 | 9nn 9176 | . 2 ⊢ 9 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 12728 | 1 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 ℕcn 9007 9c9 9065 ndxcnx 12700 Slot cslot 12702 TopSetcts 12786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-ndx 12706 df-slot 12707 df-tset 12799 |
| This theorem is referenced by: topgrptsetd 12901 topnfn 12946 topnvalg 12953 mgptsetg 13560 sratsetg 14077 cnfldtset 14198 topontopn 14357 setsmsdsg 14800 setsmstsetg 14801 |
| Copyright terms: Public domain | W3C validator |