ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubrg2 GIF version

Theorem subsubrg2 14078
Description: The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypothesis
Ref Expression
subsubrg.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrg2 (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴))

Proof of Theorem subsubrg2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 subsubrg.s . . . 4 𝑆 = (𝑅s 𝐴)
21subsubrg 14077 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑎 ∈ (SubRing‘𝑆) ↔ (𝑎 ∈ (SubRing‘𝑅) ∧ 𝑎𝐴)))
3 elin 3360 . . . 4 (𝑎 ∈ ((SubRing‘𝑅) ∩ 𝒫 𝐴) ↔ (𝑎 ∈ (SubRing‘𝑅) ∧ 𝑎 ∈ 𝒫 𝐴))
4 velpw 3627 . . . . 5 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
54anbi2i 457 . . . 4 ((𝑎 ∈ (SubRing‘𝑅) ∧ 𝑎 ∈ 𝒫 𝐴) ↔ (𝑎 ∈ (SubRing‘𝑅) ∧ 𝑎𝐴))
63, 5bitr2i 185 . . 3 ((𝑎 ∈ (SubRing‘𝑅) ∧ 𝑎𝐴) ↔ 𝑎 ∈ ((SubRing‘𝑅) ∩ 𝒫 𝐴))
72, 6bitrdi 196 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑎 ∈ (SubRing‘𝑆) ↔ 𝑎 ∈ ((SubRing‘𝑅) ∩ 𝒫 𝐴)))
87eqrdv 2204 1 (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cin 3169  wss 3170  𝒫 cpw 3620  cfv 5279  (class class class)co 5956  s cress 12903  SubRingcsubrg 14049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-lttrn 8054  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-iress 12910  df-plusg 12992  df-mulr 12993  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-subg 13576  df-mgp 13753  df-ur 13792  df-ring 13830  df-subrg 14051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator