MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0domgOLD Structured version   Visualization version   GIF version

Theorem 0domgOLD 9101
Description: Obsolete version of 0domg 9100 as of 29-Nov-2024. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
0domgOLD (𝐴𝑉 → ∅ ≼ 𝐴)

Proof of Theorem 0domgOLD
StepHypRef Expression
1 0ss 4397 . 2 ∅ ⊆ 𝐴
2 ssdomg 8996 . 2 (𝐴𝑉 → (∅ ⊆ 𝐴 → ∅ ≼ 𝐴))
31, 2mpi 20 1 (𝐴𝑉 → ∅ ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3949  c0 4323   class class class wbr 5149  cdom 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-dom 8941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator