![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0domgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 0domg 9051 as of 29-Nov-2024. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0domgOLD | ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4361 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | ssdomg 8947 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ ⊆ 𝐴 → ∅ ≼ 𝐴)) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3915 ∅c0 4287 class class class wbr 5110 ≼ cdom 8888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-dom 8892 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |