![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dom0 | Structured version Visualization version GIF version |
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5362, ax-un 7721. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
dom0 | β’ (π΄ βΌ β β π΄ = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 8950 | . . 3 β’ (π΄ βΌ β β βπ π:π΄β1-1ββ ) | |
2 | f1f 6784 | . . . . 5 β’ (π:π΄β1-1ββ β π:π΄βΆβ ) | |
3 | f00 6770 | . . . . . 6 β’ (π:π΄βΆβ β (π = β β§ π΄ = β )) | |
4 | 3 | simprbi 497 | . . . . 5 β’ (π:π΄βΆβ β π΄ = β ) |
5 | 2, 4 | syl 17 | . . . 4 β’ (π:π΄β1-1ββ β π΄ = β ) |
6 | 5 | exlimiv 1933 | . . 3 β’ (βπ π:π΄β1-1ββ β π΄ = β ) |
7 | 1, 6 | syl 17 | . 2 β’ (π΄ βΌ β β π΄ = β ) |
8 | en0 9009 | . . 3 β’ (π΄ β β β π΄ = β ) | |
9 | endom 8971 | . . 3 β’ (π΄ β β β π΄ βΌ β ) | |
10 | 8, 9 | sylbir 234 | . 2 β’ (π΄ = β β π΄ βΌ β ) |
11 | 7, 10 | impbii 208 | 1 β’ (π΄ βΌ β β π΄ = β ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1541 βwex 1781 β c0 4321 class class class wbr 5147 βΆwf 6536 β1-1βwf1 6537 β cen 8932 βΌ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-en 8936 df-dom 8937 |
This theorem is referenced by: sdom0 9104 0sdom1dom 9234 fin1a2lem11 10401 cfpwsdom 10575 |
Copyright terms: Public domain | W3C validator |