Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dom0 | Structured version Visualization version GIF version |
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdomi 8748 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑓 𝑓:𝐴–1-1→∅) | |
2 | f1f 6670 | . . . . 5 ⊢ (𝑓:𝐴–1-1→∅ → 𝑓:𝐴⟶∅) | |
3 | f00 6656 | . . . . . 6 ⊢ (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
4 | 3 | simprbi 497 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → 𝐴 = ∅) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1→∅ → 𝐴 = ∅) |
6 | 5 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→∅ → 𝐴 = ∅) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
8 | en0 8803 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
9 | endom 8767 | . . 3 ⊢ (𝐴 ≈ ∅ → 𝐴 ≼ ∅) | |
10 | 8, 9 | sylbir 234 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
11 | 7, 10 | impbii 208 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1782 ∅c0 4256 class class class wbr 5074 ⟶wf 6429 –1-1→wf1 6430 ≈ cen 8730 ≼ cdom 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-en 8734 df-dom 8735 |
This theorem is referenced by: sdom0 8895 fin1a2lem11 10166 cfpwsdom 10340 |
Copyright terms: Public domain | W3C validator |