MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom0 Structured version   Visualization version   GIF version

Theorem dom0 9029
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5307, ax-un 7675. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
dom0 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)

Proof of Theorem dom0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8892 . . 3 (𝐴 ≼ ∅ → ∃𝑓 𝑓:𝐴1-1→∅)
2 f1f 6724 . . . . 5 (𝑓:𝐴1-1→∅ → 𝑓:𝐴⟶∅)
3 f00 6710 . . . . . 6 (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
43simprbi 496 . . . . 5 (𝑓:𝐴⟶∅ → 𝐴 = ∅)
52, 4syl 17 . . . 4 (𝑓:𝐴1-1→∅ → 𝐴 = ∅)
65exlimiv 1930 . . 3 (∃𝑓 𝑓:𝐴1-1→∅ → 𝐴 = ∅)
71, 6syl 17 . 2 (𝐴 ≼ ∅ → 𝐴 = ∅)
8 en0 8950 . . 3 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
9 endom 8911 . . 3 (𝐴 ≈ ∅ → 𝐴 ≼ ∅)
108, 9sylbir 235 . 2 (𝐴 = ∅ → 𝐴 ≼ ∅)
117, 10impbii 209 1 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  c0 4286   class class class wbr 5095  wf 6482  1-1wf1 6483  cen 8876  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-en 8880  df-dom 8881
This theorem is referenced by:  sdom0  9033  0sdom1dom  9145  fin1a2lem11  10323  cfpwsdom  10497
  Copyright terms: Public domain W3C validator