Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dom0 | Structured version Visualization version GIF version |
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) |
Ref | Expression |
---|---|
dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8531 | . . . . 5 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5575 | . . . 4 ⊢ (𝐴 ≼ ∅ → 𝐴 ∈ V) |
3 | 0domg 8663 | . . . 4 ⊢ (𝐴 ∈ V → ∅ ≼ 𝐴) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ≼ ∅ → ∅ ≼ 𝐴) |
5 | 4 | pm4.71i 564 | . 2 ⊢ (𝐴 ≼ ∅ ↔ (𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴)) |
6 | sbthb 8657 | . 2 ⊢ ((𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴) ↔ 𝐴 ≈ ∅) | |
7 | en0 8588 | . 2 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
8 | 5, 6, 7 | 3bitri 301 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∅c0 4226 class class class wbr 5030 ≈ cen 8522 ≼ cdom 8523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-br 5031 df-opab 5093 df-id 5428 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-er 8297 df-en 8526 df-dom 8527 |
This theorem is referenced by: fin1a2lem11 9860 cfpwsdom 10034 |
Copyright terms: Public domain | W3C validator |