MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom0 Structured version   Visualization version   GIF version

Theorem dom0 9018
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5303, ax-un 7668. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
dom0 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)

Proof of Theorem dom0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8882 . . 3 (𝐴 ≼ ∅ → ∃𝑓 𝑓:𝐴1-1→∅)
2 f1f 6719 . . . . 5 (𝑓:𝐴1-1→∅ → 𝑓:𝐴⟶∅)
3 f00 6705 . . . . . 6 (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
43simprbi 496 . . . . 5 (𝑓:𝐴⟶∅ → 𝐴 = ∅)
52, 4syl 17 . . . 4 (𝑓:𝐴1-1→∅ → 𝐴 = ∅)
65exlimiv 1931 . . 3 (∃𝑓 𝑓:𝐴1-1→∅ → 𝐴 = ∅)
71, 6syl 17 . 2 (𝐴 ≼ ∅ → 𝐴 = ∅)
8 en0 8940 . . 3 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
9 endom 8901 . . 3 (𝐴 ≈ ∅ → 𝐴 ≼ ∅)
108, 9sylbir 235 . 2 (𝐴 = ∅ → 𝐴 ≼ ∅)
117, 10impbii 209 1 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wex 1780  c0 4283   class class class wbr 5091  wf 6477  1-1wf1 6478  cen 8866  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-en 8870  df-dom 8871
This theorem is referenced by:  sdom0  9022  0sdom1dom  9130  fin1a2lem11  10301  cfpwsdom  10475
  Copyright terms: Public domain W3C validator