MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom0 Structured version   Visualization version   GIF version

Theorem dom0 8499
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
Assertion
Ref Expression
dom0 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)

Proof of Theorem dom0
StepHypRef Expression
1 reldom 8370 . . . . 5 Rel ≼
21brrelex1i 5501 . . . 4 (𝐴 ≼ ∅ → 𝐴 ∈ V)
3 0domg 8498 . . . 4 (𝐴 ∈ V → ∅ ≼ 𝐴)
42, 3syl 17 . . 3 (𝐴 ≼ ∅ → ∅ ≼ 𝐴)
54pm4.71i 560 . 2 (𝐴 ≼ ∅ ↔ (𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴))
6 sbthb 8492 . 2 ((𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴) ↔ 𝐴 ≈ ∅)
7 en0 8427 . 2 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
85, 6, 73bitri 298 1 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1525  wcel 2083  Vcvv 3440  c0 4217   class class class wbr 4968  cen 8361  cdom 8362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-er 8146  df-en 8365  df-dom 8366
This theorem is referenced by:  fin1a2lem11  9685  cfpwsdom  9859
  Copyright terms: Public domain W3C validator