| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dom0 | Structured version Visualization version GIF version | ||
| Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5340, ax-un 7734. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 8978 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑓 𝑓:𝐴–1-1→∅) | |
| 2 | f1f 6779 | . . . . 5 ⊢ (𝑓:𝐴–1-1→∅ → 𝑓:𝐴⟶∅) | |
| 3 | f00 6765 | . . . . . 6 ⊢ (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → 𝐴 = ∅) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1→∅ → 𝐴 = ∅) |
| 6 | 5 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→∅ → 𝐴 = ∅) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
| 8 | en0 9037 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 9 | endom 8998 | . . 3 ⊢ (𝐴 ≈ ∅ → 𝐴 ≼ ∅) | |
| 10 | 8, 9 | sylbir 235 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
| 11 | 7, 10 | impbii 209 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∅c0 4313 class class class wbr 5124 ⟶wf 6532 –1-1→wf1 6533 ≈ cen 8961 ≼ cdom 8962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-en 8965 df-dom 8966 |
| This theorem is referenced by: sdom0 9127 0sdom1dom 9251 fin1a2lem11 10429 cfpwsdom 10603 |
| Copyright terms: Public domain | W3C validator |