| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dom0 | Structured version Visualization version GIF version | ||
| Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5305, ax-un 7674. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 8888 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑓 𝑓:𝐴–1-1→∅) | |
| 2 | f1f 6724 | . . . . 5 ⊢ (𝑓:𝐴–1-1→∅ → 𝑓:𝐴⟶∅) | |
| 3 | f00 6710 | . . . . . 6 ⊢ (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → 𝐴 = ∅) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1→∅ → 𝐴 = ∅) |
| 6 | 5 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→∅ → 𝐴 = ∅) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
| 8 | en0 8947 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 9 | endom 8908 | . . 3 ⊢ (𝐴 ≈ ∅ → 𝐴 ≼ ∅) | |
| 10 | 8, 9 | sylbir 235 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
| 11 | 7, 10 | impbii 209 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∅c0 4282 class class class wbr 5093 ⟶wf 6482 –1-1→wf1 6483 ≈ cen 8872 ≼ cdom 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-en 8876 df-dom 8877 |
| This theorem is referenced by: sdom0 9029 0sdom1dom 9137 fin1a2lem11 10308 cfpwsdom 10482 |
| Copyright terms: Public domain | W3C validator |