MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom0 Structured version   Visualization version   GIF version

Theorem dom0 9141
Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5371, ax-un 7754. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
dom0 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)

Proof of Theorem dom0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 8998 . . 3 (𝐴 ≼ ∅ → ∃𝑓 𝑓:𝐴1-1→∅)
2 f1f 6805 . . . . 5 (𝑓:𝐴1-1→∅ → 𝑓:𝐴⟶∅)
3 f00 6791 . . . . . 6 (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
43simprbi 496 . . . . 5 (𝑓:𝐴⟶∅ → 𝐴 = ∅)
52, 4syl 17 . . . 4 (𝑓:𝐴1-1→∅ → 𝐴 = ∅)
65exlimiv 1928 . . 3 (∃𝑓 𝑓:𝐴1-1→∅ → 𝐴 = ∅)
71, 6syl 17 . 2 (𝐴 ≼ ∅ → 𝐴 = ∅)
8 en0 9057 . . 3 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
9 endom 9018 . . 3 (𝐴 ≈ ∅ → 𝐴 ≼ ∅)
108, 9sylbir 235 . 2 (𝐴 = ∅ → 𝐴 ≼ ∅)
117, 10impbii 209 1 (𝐴 ≼ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1776  c0 4339   class class class wbr 5148  wf 6559  1-1wf1 6560  cen 8981  cdom 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-en 8985  df-dom 8986
This theorem is referenced by:  sdom0  9147  0sdom1dom  9272  fin1a2lem11  10448  cfpwsdom  10622
  Copyright terms: Public domain W3C validator