| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dom0 | Structured version Visualization version GIF version | ||
| Description: A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5303, ax-un 7668. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| dom0 | ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 8882 | . . 3 ⊢ (𝐴 ≼ ∅ → ∃𝑓 𝑓:𝐴–1-1→∅) | |
| 2 | f1f 6719 | . . . . 5 ⊢ (𝑓:𝐴–1-1→∅ → 𝑓:𝐴⟶∅) | |
| 3 | f00 6705 | . . . . . 6 ⊢ (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 3 | simprbi 496 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ → 𝐴 = ∅) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1→∅ → 𝐴 = ∅) |
| 6 | 5 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→∅ → 𝐴 = ∅) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝐴 ≼ ∅ → 𝐴 = ∅) |
| 8 | en0 8940 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 9 | endom 8901 | . . 3 ⊢ (𝐴 ≈ ∅ → 𝐴 ≼ ∅) | |
| 10 | 8, 9 | sylbir 235 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≼ ∅) |
| 11 | 7, 10 | impbii 209 | 1 ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∅c0 4283 class class class wbr 5091 ⟶wf 6477 –1-1→wf1 6478 ≈ cen 8866 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 df-dom 8871 |
| This theorem is referenced by: sdom0 9022 0sdom1dom 9130 fin1a2lem11 10301 cfpwsdom 10475 |
| Copyright terms: Public domain | W3C validator |