| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0psubN | Structured version Visualization version GIF version | ||
| Description: The empty set is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0psub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| 0psubN | ⊢ (𝐾 ∈ 𝑉 → ∅ ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ (Atoms‘𝐾) | |
| 2 | ral0 4476 | . . 3 ⊢ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅) | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (∅ ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅)) |
| 4 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2729 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 6 | eqid 2729 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 7 | 0psub.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 8 | 4, 5, 6, 7 | ispsubsp 39739 | . 2 ⊢ (𝐾 ∈ 𝑉 → (∅ ∈ 𝑆 ↔ (∅ ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅)))) |
| 9 | 3, 8 | mpbiri 258 | 1 ⊢ (𝐾 ∈ 𝑉 → ∅ ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 lecple 17227 joincjn 18272 Atomscatm 39256 PSubSpcpsubsp 39490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-psubsp 39497 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |