Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0psubN Structured version   Visualization version   GIF version

Theorem 0psubN 37690
Description: The empty set is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
0psub.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
0psubN (𝐾𝑉 → ∅ ∈ 𝑆)

Proof of Theorem 0psubN
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4327 . . 3 ∅ ⊆ (Atoms‘𝐾)
2 ral0 4440 . . 3 𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅)
31, 2pm3.2i 470 . 2 (∅ ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅))
4 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
5 eqid 2738 . . 3 (join‘𝐾) = (join‘𝐾)
6 eqid 2738 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
7 0psub.s . . 3 𝑆 = (PSubSp‘𝐾)
84, 5, 6, 7ispsubsp 37686 . 2 (𝐾𝑉 → (∅ ∈ 𝑆 ↔ (∅ ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅))))
93, 8mpbiri 257 1 (𝐾𝑉 → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204  PSubSpcpsubsp 37437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-psubsp 37444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator