Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0psubN Structured version   Visualization version   GIF version

Theorem 0psubN 38925
Description: The empty set is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
0psub.s 𝑆 = (PSubSpβ€˜πΎ)
Assertion
Ref Expression
0psubN (𝐾 ∈ 𝑉 β†’ βˆ… ∈ 𝑆)

Proof of Theorem 0psubN
Dummy variables π‘ž 𝑝 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4397 . . 3 βˆ… βŠ† (Atomsβ€˜πΎ)
2 ral0 4513 . . 3 βˆ€π‘ ∈ βˆ… βˆ€π‘ž ∈ βˆ… βˆ€π‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘Ÿ(leβ€˜πΎ)(𝑝(joinβ€˜πΎ)π‘ž) β†’ π‘Ÿ ∈ βˆ…)
31, 2pm3.2i 469 . 2 (βˆ… βŠ† (Atomsβ€˜πΎ) ∧ βˆ€π‘ ∈ βˆ… βˆ€π‘ž ∈ βˆ… βˆ€π‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘Ÿ(leβ€˜πΎ)(𝑝(joinβ€˜πΎ)π‘ž) β†’ π‘Ÿ ∈ βˆ…))
4 eqid 2730 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
5 eqid 2730 . . 3 (joinβ€˜πΎ) = (joinβ€˜πΎ)
6 eqid 2730 . . 3 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
7 0psub.s . . 3 𝑆 = (PSubSpβ€˜πΎ)
84, 5, 6, 7ispsubsp 38921 . 2 (𝐾 ∈ 𝑉 β†’ (βˆ… ∈ 𝑆 ↔ (βˆ… βŠ† (Atomsβ€˜πΎ) ∧ βˆ€π‘ ∈ βˆ… βˆ€π‘ž ∈ βˆ… βˆ€π‘Ÿ ∈ (Atomsβ€˜πΎ)(π‘Ÿ(leβ€˜πΎ)(𝑝(joinβ€˜πΎ)π‘ž) β†’ π‘Ÿ ∈ βˆ…))))
93, 8mpbiri 257 1 (𝐾 ∈ 𝑉 β†’ βˆ… ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   βŠ† wss 3949  βˆ…c0 4323   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7413  lecple 17210  joincjn 18270  Atomscatm 38438  PSubSpcpsubsp 38672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-psubsp 38679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator