| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0psubN | Structured version Visualization version GIF version | ||
| Description: The empty set is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0psub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| 0psubN | ⊢ (𝐾 ∈ 𝑉 → ∅ ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ (Atoms‘𝐾) | |
| 2 | ral0 4460 | . . 3 ⊢ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅) | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (∅ ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅)) |
| 4 | eqid 2731 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2731 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 6 | eqid 2731 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 7 | 0psub.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 8 | 4, 5, 6, 7 | ispsubsp 39843 | . 2 ⊢ (𝐾 ∈ 𝑉 → (∅ ∈ 𝑆 ↔ (∅ ⊆ (Atoms‘𝐾) ∧ ∀𝑝 ∈ ∅ ∀𝑞 ∈ ∅ ∀𝑟 ∈ (Atoms‘𝐾)(𝑟(le‘𝐾)(𝑝(join‘𝐾)𝑞) → 𝑟 ∈ ∅)))) |
| 9 | 3, 8 | mpbiri 258 | 1 ⊢ (𝐾 ∈ 𝑉 → ∅ ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 lecple 17168 joincjn 18217 Atomscatm 39361 PSubSpcpsubsp 39594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-psubsp 39601 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |