| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > psubspi2N | Structured version Visualization version GIF version | ||
| Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psubspset.l | ⊢ ≤ = (le‘𝐾) |
| psubspset.j | ⊢ ∨ = (join‘𝐾) |
| psubspset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| psubspset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| psubspi2N | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . . . 4 ⊢ (𝑞 = 𝑄 → (𝑞 ∨ 𝑟) = (𝑄 ∨ 𝑟)) | |
| 2 | 1 | breq2d 5105 | . . 3 ⊢ (𝑞 = 𝑄 → (𝑃 ≤ (𝑞 ∨ 𝑟) ↔ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
| 3 | oveq2 7360 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑅)) | |
| 4 | 3 | breq2d 5105 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑃 ≤ (𝑄 ∨ 𝑅))) |
| 5 | 2, 4 | rspc2ev 3585 | . 2 ⊢ ((𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) |
| 6 | psubspset.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 7 | psubspset.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 8 | psubspset.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | psubspset.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 10 | 6, 7, 8, 9 | psubspi 39852 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) → 𝑃 ∈ 𝑋) |
| 11 | 5, 10 | sylan2 593 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 lecple 17174 joincjn 18223 Atomscatm 39368 PSubSpcpsubsp 39601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6443 df-fun 6489 df-fv 6495 df-ov 7355 df-psubsp 39608 |
| This theorem is referenced by: pclclN 39996 pclfinN 40005 pclfinclN 40055 |
| Copyright terms: Public domain | W3C validator |