Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspi2N Structured version   Visualization version   GIF version

Theorem psubspi2N 37689
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubspi2N (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ (𝑄𝑋𝑅𝑋𝑃 (𝑄 𝑅))) → 𝑃𝑋)

Proof of Theorem psubspi2N
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
21breq2d 5082 . . 3 (𝑞 = 𝑄 → (𝑃 (𝑞 𝑟) ↔ 𝑃 (𝑄 𝑟)))
3 oveq2 7263 . . . 4 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
43breq2d 5082 . . 3 (𝑟 = 𝑅 → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 𝑅)))
52, 4rspc2ev 3564 . 2 ((𝑄𝑋𝑅𝑋𝑃 (𝑄 𝑅)) → ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟))
6 psubspset.l . . 3 = (le‘𝐾)
7 psubspset.j . . 3 = (join‘𝐾)
8 psubspset.a . . 3 𝐴 = (Atoms‘𝐾)
9 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
106, 7, 8, 9psubspi 37688 . 2 (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)) → 𝑃𝑋)
115, 10sylan2 592 1 (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ (𝑄𝑋𝑅𝑋𝑃 (𝑄 𝑅))) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204  PSubSpcpsubsp 37437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-psubsp 37444
This theorem is referenced by:  pclclN  37832  pclfinN  37841  pclfinclN  37891
  Copyright terms: Public domain W3C validator