Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubspi2N | Structured version Visualization version GIF version |
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubspset.l | ⊢ ≤ = (le‘𝐾) |
psubspset.j | ⊢ ∨ = (join‘𝐾) |
psubspset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
psubspset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
Ref | Expression |
---|---|
psubspi2N | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7262 | . . . 4 ⊢ (𝑞 = 𝑄 → (𝑞 ∨ 𝑟) = (𝑄 ∨ 𝑟)) | |
2 | 1 | breq2d 5082 | . . 3 ⊢ (𝑞 = 𝑄 → (𝑃 ≤ (𝑞 ∨ 𝑟) ↔ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
3 | oveq2 7263 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑅)) | |
4 | 3 | breq2d 5082 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑃 ≤ (𝑄 ∨ 𝑅))) |
5 | 2, 4 | rspc2ev 3564 | . 2 ⊢ ((𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) |
6 | psubspset.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
7 | psubspset.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
8 | psubspset.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | psubspset.s | . . 3 ⊢ 𝑆 = (PSubSp‘𝐾) | |
10 | 6, 7, 8, 9 | psubspi 37688 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑋 𝑃 ≤ (𝑞 ∨ 𝑟)) → 𝑃 ∈ 𝑋) |
11 | 5, 10 | sylan2 592 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 Atomscatm 37204 PSubSpcpsubsp 37437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-psubsp 37444 |
This theorem is referenced by: pclclN 37832 pclfinN 37841 pclfinclN 37891 |
Copyright terms: Public domain | W3C validator |