Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspi2N Structured version   Visualization version   GIF version

Theorem psubspi2N 37385
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubspi2N (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ (𝑄𝑋𝑅𝑋𝑃 (𝑄 𝑅))) → 𝑃𝑋)

Proof of Theorem psubspi2N
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7177 . . . 4 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
21breq2d 5042 . . 3 (𝑞 = 𝑄 → (𝑃 (𝑞 𝑟) ↔ 𝑃 (𝑄 𝑟)))
3 oveq2 7178 . . . 4 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
43breq2d 5042 . . 3 (𝑟 = 𝑅 → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 𝑅)))
52, 4rspc2ev 3538 . 2 ((𝑄𝑋𝑅𝑋𝑃 (𝑄 𝑅)) → ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟))
6 psubspset.l . . 3 = (le‘𝐾)
7 psubspset.j . . 3 = (join‘𝐾)
8 psubspset.a . . 3 𝐴 = (Atoms‘𝐾)
9 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
106, 7, 8, 9psubspi 37384 . 2 (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)) → 𝑃𝑋)
115, 10sylan2 596 1 (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ (𝑄𝑋𝑅𝑋𝑃 (𝑄 𝑅))) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wrex 3054   class class class wbr 5030  cfv 6339  (class class class)co 7170  lecple 16675  joincjn 17670  Atomscatm 36900  PSubSpcpsubsp 37133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6297  df-fun 6341  df-fv 6347  df-ov 7173  df-psubsp 37140
This theorem is referenced by:  pclclN  37528  pclfinN  37537  pclfinclN  37587
  Copyright terms: Public domain W3C validator