Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspi2N Structured version   Visualization version   GIF version

Theorem psubspi2N 39853
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
psubspi2N (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ (𝑄𝑋𝑅𝑋𝑃 (𝑄 𝑅))) → 𝑃𝑋)

Proof of Theorem psubspi2N
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7359 . . . 4 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
21breq2d 5105 . . 3 (𝑞 = 𝑄 → (𝑃 (𝑞 𝑟) ↔ 𝑃 (𝑄 𝑟)))
3 oveq2 7360 . . . 4 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
43breq2d 5105 . . 3 (𝑟 = 𝑅 → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 𝑅)))
52, 4rspc2ev 3585 . 2 ((𝑄𝑋𝑅𝑋𝑃 (𝑄 𝑅)) → ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟))
6 psubspset.l . . 3 = (le‘𝐾)
7 psubspset.j . . 3 = (join‘𝐾)
8 psubspset.a . . 3 𝐴 = (Atoms‘𝐾)
9 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
106, 7, 8, 9psubspi 39852 . 2 (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ ∃𝑞𝑋𝑟𝑋 𝑃 (𝑞 𝑟)) → 𝑃𝑋)
115, 10sylan2 593 1 (((𝐾𝐷𝑋𝑆𝑃𝐴) ∧ (𝑄𝑋𝑅𝑋𝑃 (𝑄 𝑅))) → 𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5093  cfv 6487  (class class class)co 7352  lecple 17174  joincjn 18223  Atomscatm 39368  PSubSpcpsubsp 39601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6443  df-fun 6489  df-fv 6495  df-ov 7355  df-psubsp 39608
This theorem is referenced by:  pclclN  39996  pclfinN  40005  pclfinclN  40055
  Copyright terms: Public domain W3C validator