Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubspi2N Structured version   Visualization version   GIF version

Theorem psubspi2N 38614
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubspset.l ≀ = (leβ€˜πΎ)
psubspset.j ∨ = (joinβ€˜πΎ)
psubspset.a 𝐴 = (Atomsβ€˜πΎ)
psubspset.s 𝑆 = (PSubSpβ€˜πΎ)
Assertion
Ref Expression
psubspi2N (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑃 ∈ 𝑋)

Proof of Theorem psubspi2N
Dummy variables π‘Ÿ π‘ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7415 . . . 4 (π‘ž = 𝑄 β†’ (π‘ž ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))
21breq2d 5160 . . 3 (π‘ž = 𝑄 β†’ (𝑃 ≀ (π‘ž ∨ π‘Ÿ) ↔ 𝑃 ≀ (𝑄 ∨ π‘Ÿ)))
3 oveq2 7416 . . . 4 (π‘Ÿ = 𝑅 β†’ (𝑄 ∨ π‘Ÿ) = (𝑄 ∨ 𝑅))
43breq2d 5160 . . 3 (π‘Ÿ = 𝑅 β†’ (𝑃 ≀ (𝑄 ∨ π‘Ÿ) ↔ 𝑃 ≀ (𝑄 ∨ 𝑅)))
52, 4rspc2ev 3624 . 2 ((𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑃 ≀ (π‘ž ∨ π‘Ÿ))
6 psubspset.l . . 3 ≀ = (leβ€˜πΎ)
7 psubspset.j . . 3 ∨ = (joinβ€˜πΎ)
8 psubspset.a . . 3 𝐴 = (Atomsβ€˜πΎ)
9 psubspset.s . . 3 𝑆 = (PSubSpβ€˜πΎ)
106, 7, 8, 9psubspi 38613 . 2 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ βˆƒπ‘ž ∈ 𝑋 βˆƒπ‘Ÿ ∈ 𝑋 𝑃 ≀ (π‘ž ∨ π‘Ÿ)) β†’ 𝑃 ∈ 𝑋)
115, 10sylan2 593 1 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑃 ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  lecple 17203  joincjn 18263  Atomscatm 38128  PSubSpcpsubsp 38362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-psubsp 38369
This theorem is referenced by:  pclclN  38757  pclfinN  38766  pclfinclN  38816
  Copyright terms: Public domain W3C validator