![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psubspi2N | Structured version Visualization version GIF version |
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubspset.l | β’ β€ = (leβπΎ) |
psubspset.j | β’ β¨ = (joinβπΎ) |
psubspset.a | β’ π΄ = (AtomsβπΎ) |
psubspset.s | β’ π = (PSubSpβπΎ) |
Ref | Expression |
---|---|
psubspi2N | β’ (((πΎ β π· β§ π β π β§ π β π΄) β§ (π β π β§ π β π β§ π β€ (π β¨ π ))) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7415 | . . . 4 β’ (π = π β (π β¨ π) = (π β¨ π)) | |
2 | 1 | breq2d 5160 | . . 3 β’ (π = π β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
3 | oveq2 7416 | . . . 4 β’ (π = π β (π β¨ π) = (π β¨ π )) | |
4 | 3 | breq2d 5160 | . . 3 β’ (π = π β (π β€ (π β¨ π) β π β€ (π β¨ π ))) |
5 | 2, 4 | rspc2ev 3624 | . 2 β’ ((π β π β§ π β π β§ π β€ (π β¨ π )) β βπ β π βπ β π π β€ (π β¨ π)) |
6 | psubspset.l | . . 3 β’ β€ = (leβπΎ) | |
7 | psubspset.j | . . 3 β’ β¨ = (joinβπΎ) | |
8 | psubspset.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
9 | psubspset.s | . . 3 β’ π = (PSubSpβπΎ) | |
10 | 6, 7, 8, 9 | psubspi 38613 | . 2 β’ (((πΎ β π· β§ π β π β§ π β π΄) β§ βπ β π βπ β π π β€ (π β¨ π)) β π β π) |
11 | 5, 10 | sylan2 593 | 1 β’ (((πΎ β π· β§ π β π β§ π β π΄) β§ (π β π β§ π β π β§ π β€ (π β¨ π ))) β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwrex 3070 class class class wbr 5148 βcfv 6543 (class class class)co 7408 lecple 17203 joincjn 18263 Atomscatm 38128 PSubSpcpsubsp 38362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-psubsp 38369 |
This theorem is referenced by: pclclN 38757 pclfinN 38766 pclfinclN 38816 |
Copyright terms: Public domain | W3C validator |