Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onno Structured version   Visualization version   GIF version

Theorem onno 43439
Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
Assertion
Ref Expression
onno (𝐴 ∈ On → (𝐴 × {2o}) ∈ No )

Proof of Theorem onno
StepHypRef Expression
1 2oex 8525 . . 3 2o ∈ V
21prid2 4771 . 2 2o ∈ {1o, 2o}
3 onnog 43435 . 2 ((𝐴 ∈ On ∧ 2o ∈ {1o, 2o}) → (𝐴 × {2o}) ∈ No )
42, 3mpan2 691 1 (𝐴 ∈ On → (𝐴 × {2o}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {csn 4634  {cpr 4636   × cxp 5691  Oncon0 6392  1oc1o 8507  2oc2o 8508   No csur 27710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-suc 6398  df-fun 6571  df-fn 6572  df-f 6573  df-1o 8514  df-2o 8515  df-no 27713
This theorem is referenced by:  onnoi  43440
  Copyright terms: Public domain W3C validator