MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbday Structured version   Visualization version   GIF version

Theorem nosupbday 27650
Description: Birthday bounding law for surreal supremum. (Contributed by Scott Fenton, 5-Dec-2021.)
Hypothesis
Ref Expression
nosupbday.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbday (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → ( bday 𝑆) ⊆ 𝑂)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑂,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑂(𝑥,𝑣,𝑔)

Proof of Theorem nosupbday
StepHypRef Expression
1 nosupbday.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 27648 . . . 4 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
32adantr 480 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → 𝑆 No )
4 bdayval 27593 . . 3 (𝑆 No → ( bday 𝑆) = dom 𝑆)
53, 4syl 17 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → ( bday 𝑆) = dom 𝑆)
6 iftrue 4490 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
71, 6eqtrid 2776 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
87dmeqd 5859 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
9 2oex 8422 . . . . . . . . 9 2o ∈ V
109dmsnop 6177 . . . . . . . 8 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
1110uneq2i 4124 . . . . . . 7 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
12 dmun 5864 . . . . . . 7 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})
13 df-suc 6326 . . . . . . 7 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
1411, 12, 133eqtr4i 2762 . . . . . 6 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
158, 14eqtrdi 2780 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
1615adantr 480 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
17 simprrl 780 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → 𝑂 ∈ On)
18 eloni 6330 . . . . . 6 (𝑂 ∈ On → Ord 𝑂)
1917, 18syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → Ord 𝑂)
20 simprll 778 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → 𝐴 No )
21 simpl 482 . . . . . . . . . . 11 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
22 nomaxmo 27643 . . . . . . . . . . . . 13 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2322adantr 480 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2423adantl 481 . . . . . . . . . . 11 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
25 reu5 3353 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
2621, 24, 25sylanbrc 583 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2726adantrr 717 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
28 riotacl 7343 . . . . . . . . 9 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
2927, 28syl 17 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
3020, 29sseldd 3944 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
31 bdayval 27593 . . . . . . 7 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
3230, 31syl 17 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
33 simprrr 781 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ( bday 𝐴) ⊆ 𝑂)
34 bdayfo 27622 . . . . . . . . 9 bday : No onto→On
35 fofn 6756 . . . . . . . . 9 ( bday : No onto→On → bday Fn No )
3634, 35ax-mp 5 . . . . . . . 8 bday Fn No
37 fnfvima 7189 . . . . . . . 8 (( bday Fn No 𝐴 No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴) → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ ( bday 𝐴))
3836, 20, 29, 37mp3an2i 1468 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ ( bday 𝐴))
3933, 38sseldd 3944 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ 𝑂)
4032, 39eqeltrrd 2829 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝑂)
41 ordsucss 7773 . . . . 5 (Ord 𝑂 → (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝑂 → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ 𝑂))
4219, 40, 41sylc 65 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ 𝑂)
4316, 42eqsstrd 3978 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom 𝑆𝑂)
44 iffalse 4493 . . . . . . . 8 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
451, 44eqtrid 2776 . . . . . . 7 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
4645dmeqd 5859 . . . . . 6 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
47 iotaex 6472 . . . . . . 7 (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
48 eqid 2729 . . . . . . 7 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
4947, 48dmmpti 6644 . . . . . 6 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
5046, 49eqtrdi 2780 . . . . 5 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
5150adantr 480 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom 𝑆 = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
52 simplrl 776 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → 𝑂 ∈ On)
53 ssel2 3938 . . . . . . . . . . . . 13 ((𝐴 No 𝑢𝐴) → 𝑢 No )
5453ad4ant14 752 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → 𝑢 No )
55 bdayval 27593 . . . . . . . . . . . 12 (𝑢 No → ( bday 𝑢) = dom 𝑢)
5654, 55syl 17 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ( bday 𝑢) = dom 𝑢)
57 simplrr 777 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ( bday 𝐴) ⊆ 𝑂)
58 fnfvima 7189 . . . . . . . . . . . . . 14 (( bday Fn No 𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
5936, 58mp3an1 1450 . . . . . . . . . . . . 13 ((𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
6059ad4ant14 752 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
6157, 60sseldd 3944 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ( bday 𝑢) ∈ 𝑂)
6256, 61eqeltrrd 2829 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → dom 𝑢𝑂)
63 onelss 6362 . . . . . . . . . 10 (𝑂 ∈ On → (dom 𝑢𝑂 → dom 𝑢𝑂))
6452, 62, 63sylc 65 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → dom 𝑢𝑂)
6564sseld 3942 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → (𝑦 ∈ dom 𝑢𝑦𝑂))
6665adantrd 491 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦𝑂))
6766rexlimdva 3134 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦𝑂))
6867abssdv 4028 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ 𝑂)
6968adantl 481 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ 𝑂)
7051, 69eqsstrd 3978 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom 𝑆𝑂)
7143, 70pm2.61ian 811 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → dom 𝑆𝑂)
725, 71eqsstrd 3978 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → ( bday 𝑆) ⊆ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  ∃!wreu 3349  ∃*wrmo 3350  Vcvv 3444  cun 3909  wss 3911  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183  dom cdm 5631  cres 5633  cima 5634  Ord word 6319  Oncon0 6320  suc csuc 6322  cio 6450   Fn wfn 6494  ontowfo 6497  cfv 6499  crio 7325  2oc2o 8405   No csur 27584   <s cslt 27585   bday cbday 27586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-riota 7326  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589
This theorem is referenced by:  noetalem1  27686
  Copyright terms: Public domain W3C validator