MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbday Structured version   Visualization version   GIF version

Theorem nosupbday 27644
Description: Birthday bounding law for surreal supremum. (Contributed by Scott Fenton, 5-Dec-2021.)
Hypothesis
Ref Expression
nosupbday.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbday (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → ( bday 𝑆) ⊆ 𝑂)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑂,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑂(𝑥,𝑣,𝑔)

Proof of Theorem nosupbday
StepHypRef Expression
1 nosupbday.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 27642 . . . 4 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
32adantr 480 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → 𝑆 No )
4 bdayval 27587 . . 3 (𝑆 No → ( bday 𝑆) = dom 𝑆)
53, 4syl 17 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → ( bday 𝑆) = dom 𝑆)
6 iftrue 4478 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
71, 6eqtrid 2778 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
87dmeqd 5844 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
9 2oex 8396 . . . . . . . . 9 2o ∈ V
109dmsnop 6163 . . . . . . . 8 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
1110uneq2i 4112 . . . . . . 7 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
12 dmun 5849 . . . . . . 7 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})
13 df-suc 6312 . . . . . . 7 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
1411, 12, 133eqtr4i 2764 . . . . . 6 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
158, 14eqtrdi 2782 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
1615adantr 480 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
17 simprrl 780 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → 𝑂 ∈ On)
18 eloni 6316 . . . . . 6 (𝑂 ∈ On → Ord 𝑂)
1917, 18syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → Ord 𝑂)
20 simprll 778 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → 𝐴 No )
21 simpl 482 . . . . . . . . . . 11 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
22 nomaxmo 27637 . . . . . . . . . . . . 13 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2322adantr 480 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2423adantl 481 . . . . . . . . . . 11 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
25 reu5 3348 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
2621, 24, 25sylanbrc 583 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2726adantrr 717 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
28 riotacl 7320 . . . . . . . . 9 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
2927, 28syl 17 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
3020, 29sseldd 3930 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
31 bdayval 27587 . . . . . . 7 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
3230, 31syl 17 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
33 simprrr 781 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ( bday 𝐴) ⊆ 𝑂)
34 bdayfo 27616 . . . . . . . . 9 bday : No onto→On
35 fofn 6737 . . . . . . . . 9 ( bday : No onto→On → bday Fn No )
3634, 35ax-mp 5 . . . . . . . 8 bday Fn No
37 fnfvima 7167 . . . . . . . 8 (( bday Fn No 𝐴 No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴) → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ ( bday 𝐴))
3836, 20, 29, 37mp3an2i 1468 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ ( bday 𝐴))
3933, 38sseldd 3930 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → ( bday ‘(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ 𝑂)
4032, 39eqeltrrd 2832 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝑂)
41 ordsucss 7748 . . . . 5 (Ord 𝑂 → (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝑂 → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ 𝑂))
4219, 40, 41sylc 65 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ 𝑂)
4316, 42eqsstrd 3964 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom 𝑆𝑂)
44 iffalse 4481 . . . . . . . 8 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
451, 44eqtrid 2778 . . . . . . 7 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
4645dmeqd 5844 . . . . . 6 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
47 iotaex 6457 . . . . . . 7 (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
48 eqid 2731 . . . . . . 7 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
4947, 48dmmpti 6625 . . . . . 6 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
5046, 49eqtrdi 2782 . . . . 5 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
5150adantr 480 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom 𝑆 = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
52 simplrl 776 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → 𝑂 ∈ On)
53 ssel2 3924 . . . . . . . . . . . . 13 ((𝐴 No 𝑢𝐴) → 𝑢 No )
5453ad4ant14 752 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → 𝑢 No )
55 bdayval 27587 . . . . . . . . . . . 12 (𝑢 No → ( bday 𝑢) = dom 𝑢)
5654, 55syl 17 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ( bday 𝑢) = dom 𝑢)
57 simplrr 777 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ( bday 𝐴) ⊆ 𝑂)
58 fnfvima 7167 . . . . . . . . . . . . . 14 (( bday Fn No 𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
5936, 58mp3an1 1450 . . . . . . . . . . . . 13 ((𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
6059ad4ant14 752 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
6157, 60sseldd 3930 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ( bday 𝑢) ∈ 𝑂)
6256, 61eqeltrrd 2832 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → dom 𝑢𝑂)
63 onelss 6348 . . . . . . . . . 10 (𝑂 ∈ On → (dom 𝑢𝑂 → dom 𝑢𝑂))
6452, 62, 63sylc 65 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → dom 𝑢𝑂)
6564sseld 3928 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → (𝑦 ∈ dom 𝑢𝑦𝑂))
6665adantrd 491 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) ∧ 𝑢𝐴) → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦𝑂))
6766rexlimdva 3133 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦𝑂))
6867abssdv 4014 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ 𝑂)
6968adantl 481 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ 𝑂)
7051, 69eqsstrd 3964 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂))) → dom 𝑆𝑂)
7143, 70pm2.61ian 811 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → dom 𝑆𝑂)
725, 71eqsstrd 3964 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝑂 ∈ On ∧ ( bday 𝐴) ⊆ 𝑂)) → ( bday 𝑆) ⊆ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345  Vcvv 3436  cun 3895  wss 3897  ifcif 4472  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  cima 5617  Ord word 6305  Oncon0 6306  suc csuc 6308  cio 6435   Fn wfn 6476  ontowfo 6479  cfv 6481  crio 7302  2oc2o 8379   No csur 27578   <s cslt 27579   bday cbday 27580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-riota 7303  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583
This theorem is referenced by:  noetalem1  27680
  Copyright terms: Public domain W3C validator