Proof of Theorem nosupbday
Step | Hyp | Ref
| Expression |
1 | | nosupbday.1 |
. . . . 5
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | 1 | nosupno 33906 |
. . . 4
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
3 | 2 | adantr 481 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) → 𝑆 ∈ No
) |
4 | | bdayval 33851 |
. . 3
⊢ (𝑆 ∈
No → ( bday ‘𝑆) = dom 𝑆) |
5 | 3, 4 | syl 17 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) → ( bday
‘𝑆) = dom
𝑆) |
6 | | iftrue 4465 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
7 | 1, 6 | eqtrid 2790 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
8 | 7 | dmeqd 5814 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
9 | | 2oex 8308 |
. . . . . . . . 9
⊢
2o ∈ V |
10 | 9 | dmsnop 6119 |
. . . . . . . 8
⊢ dom
{〈dom (℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉} = {dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)} |
11 | 10 | uneq2i 4094 |
. . . . . . 7
⊢ (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)}) |
12 | | dmun 5819 |
. . . . . . 7
⊢ dom
((℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) |
13 | | df-suc 6272 |
. . . . . . 7
⊢ suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = (dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)}) |
14 | 11, 12, 13 | 3eqtr4i 2776 |
. . . . . 6
⊢ dom
((℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
15 | 8, 14 | eqtrdi 2794 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
16 | 15 | adantr 481 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → dom 𝑆 = suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
17 | | simprrl 778 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → 𝑂 ∈ On) |
18 | | eloni 6276 |
. . . . . 6
⊢ (𝑂 ∈ On → Ord 𝑂) |
19 | 17, 18 | syl 17 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → Ord 𝑂) |
20 | | simprll 776 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → 𝐴 ⊆ No
) |
21 | | simpl 483 |
. . . . . . . . . . 11
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
22 | | nomaxmo 33901 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆
No → ∃*𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
23 | 22 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → ∃*𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
24 | 23 | adantl 482 |
. . . . . . . . . . 11
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
25 | | reu5 3361 |
. . . . . . . . . . 11
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
26 | 21, 24, 25 | sylanbrc 583 |
. . . . . . . . . 10
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V)) →
∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
27 | 26 | adantrr 714 |
. . . . . . . . 9
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
28 | | riotacl 7250 |
. . . . . . . . 9
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴) |
29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴) |
30 | 20, 29 | sseldd 3922 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
) |
31 | | bdayval 33851 |
. . . . . . 7
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
→ ( bday ‘(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) = dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
32 | 30, 31 | syl 17 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → ( bday
‘(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) = dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
33 | | simprrr 779 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → ( bday
“ 𝐴) ⊆
𝑂) |
34 | | bdayfo 33880 |
. . . . . . . . 9
⊢ bday : No –onto→On |
35 | | fofn 6690 |
. . . . . . . . 9
⊢ ( bday : No –onto→On → bday
Fn No ) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
⊢ bday Fn No
|
37 | | fnfvima 7109 |
. . . . . . . 8
⊢ (( bday Fn No ∧ 𝐴 ⊆
No ∧ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴) → ( bday
‘(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∈ ( bday
“ 𝐴)) |
38 | 36, 20, 29, 37 | mp3an2i 1465 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → ( bday
‘(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∈ ( bday
“ 𝐴)) |
39 | 33, 38 | sseldd 3922 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → ( bday
‘(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∈ 𝑂) |
40 | 32, 39 | eqeltrrd 2840 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝑂) |
41 | | ordsucss 7665 |
. . . . 5
⊢ (Ord
𝑂 → (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝑂 → suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ⊆ 𝑂)) |
42 | 19, 40, 41 | sylc 65 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ⊆ 𝑂) |
43 | 16, 42 | eqsstrd 3959 |
. . 3
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → dom 𝑆 ⊆ 𝑂) |
44 | | iffalse 4468 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
45 | 1, 44 | eqtrid 2790 |
. . . . . . 7
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
46 | 45 | dmeqd 5814 |
. . . . . 6
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
47 | | iotaex 6413 |
. . . . . . 7
⊢
(℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) ∈ V |
48 | | eqid 2738 |
. . . . . . 7
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
49 | 47, 48 | dmmpti 6577 |
. . . . . 6
⊢ dom
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} |
50 | 46, 49 | eqtrdi 2794 |
. . . . 5
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
51 | 50 | adantr 481 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → dom 𝑆 = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
52 | | simplrl 774 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → 𝑂 ∈ On) |
53 | | ssel2 3916 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → 𝑢 ∈
No ) |
54 | 53 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ No
) |
55 | | bdayval 33851 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈
No → ( bday ‘𝑢) = dom 𝑢) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → ( bday
‘𝑢) = dom
𝑢) |
57 | | simplrr 775 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → ( bday
“ 𝐴) ⊆
𝑂) |
58 | | fnfvima 7109 |
. . . . . . . . . . . . . 14
⊢ (( bday Fn No ∧ 𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → ( bday ‘𝑢) ∈ ( bday
“ 𝐴)) |
59 | 36, 58 | mp3an1 1447 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆
No ∧ 𝑢 ∈
𝐴) → ( bday ‘𝑢) ∈ ( bday
“ 𝐴)) |
60 | 59 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → ( bday
‘𝑢) ∈
( bday “ 𝐴)) |
61 | 57, 60 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → ( bday
‘𝑢) ∈
𝑂) |
62 | 56, 61 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → dom 𝑢 ∈ 𝑂) |
63 | | onelss 6308 |
. . . . . . . . . 10
⊢ (𝑂 ∈ On → (dom 𝑢 ∈ 𝑂 → dom 𝑢 ⊆ 𝑂)) |
64 | 52, 62, 63 | sylc 65 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → dom 𝑢 ⊆ 𝑂) |
65 | 64 | sseld 3920 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → (𝑦 ∈ dom 𝑢 → 𝑦 ∈ 𝑂)) |
66 | 65 | adantrd 492 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) ∧ 𝑢 ∈ 𝐴) → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ 𝑂)) |
67 | 66 | rexlimdva 3213 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ 𝑂)) |
68 | 67 | abssdv 4002 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) → {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ 𝑂) |
69 | 68 | adantl 482 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ 𝑂) |
70 | 51, 69 | eqsstrd 3959 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑂 ∈ On ∧ ( bday “ 𝐴) ⊆ 𝑂))) → dom 𝑆 ⊆ 𝑂) |
71 | 43, 70 | pm2.61ian 809 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) → dom 𝑆 ⊆ 𝑂) |
72 | 5, 71 | eqsstrd 3959 |
1
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝑂 ∈ On ∧
( bday “ 𝐴) ⊆ 𝑂)) → ( bday
‘𝑆) ⊆
𝑂) |