MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetainflem2 Structured version   Visualization version   GIF version

Theorem noetainflem2 27230
Description: Lemma for noeta 27235. The restriction of 𝑊 to the domain of 𝑇 is 𝑇. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem2 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
Distinct variable group:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetainflem2
StepHypRef Expression
1 noetainflem.2 . . . 4 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
21reseq1i 5975 . . 3 (𝑊 ↾ dom 𝑇) = ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) ↾ dom 𝑇)
3 resundir 5994 . . 3 ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) ↾ dom 𝑇) = ((𝑇 ↾ dom 𝑇) ∪ (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇))
42, 3eqtri 2760 . 2 (𝑊 ↾ dom 𝑇) = ((𝑇 ↾ dom 𝑇) ∪ (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇))
5 noetainflem.1 . . . . . . 7 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
65noinfno 27210 . . . . . 6 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
7 nofun 27141 . . . . . 6 (𝑇 No → Fun 𝑇)
86, 7syl 17 . . . . 5 ((𝐵 No 𝐵 ∈ V) → Fun 𝑇)
9 funrel 6562 . . . . 5 (Fun 𝑇 → Rel 𝑇)
10 resdm 6024 . . . . 5 (Rel 𝑇 → (𝑇 ↾ dom 𝑇) = 𝑇)
118, 9, 103syl 18 . . . 4 ((𝐵 No 𝐵 ∈ V) → (𝑇 ↾ dom 𝑇) = 𝑇)
12 dmres 6001 . . . . . . 7 dom (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = (dom 𝑇 ∩ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
13 2oex 8473 . . . . . . . . . . 11 2o ∈ V
1413snnz 4779 . . . . . . . . . 10 {2o} ≠ ∅
15 dmxp 5926 . . . . . . . . . 10 ({2o} ≠ ∅ → dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇))
1614, 15ax-mp 5 . . . . . . . . 9 dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇)
1716ineq2i 4208 . . . . . . . 8 (dom 𝑇 ∩ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇))
18 disjdif 4470 . . . . . . . 8 (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅
1917, 18eqtri 2760 . . . . . . 7 (dom 𝑇 ∩ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = ∅
2012, 19eqtri 2760 . . . . . 6 dom (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅
21 relres 6008 . . . . . . 7 Rel (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)
22 reldm0 5925 . . . . . . 7 (Rel (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) → ((((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅ ↔ dom (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅))
2321, 22ax-mp 5 . . . . . 6 ((((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅ ↔ dom (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅)
2420, 23mpbir 230 . . . . 5 (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅
2524a1i 11 . . . 4 ((𝐵 No 𝐵 ∈ V) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅)
2611, 25uneq12d 4163 . . 3 ((𝐵 No 𝐵 ∈ V) → ((𝑇 ↾ dom 𝑇) ∪ (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) = (𝑇 ∪ ∅))
27 un0 4389 . . 3 (𝑇 ∪ ∅) = 𝑇
2826, 27eqtrdi 2788 . 2 ((𝐵 No 𝐵 ∈ V) → ((𝑇 ↾ dom 𝑇) ∪ (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) = 𝑇)
294, 28eqtrid 2784 1 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2709  wne 2940  wral 3061  wrex 3070  Vcvv 3474  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321  ifcif 4527  {csn 4627  cop 4633   cuni 4907   class class class wbr 5147  cmpt 5230   × cxp 5673  dom cdm 5675  cres 5677  cima 5678  Rel wrel 5680  suc csuc 6363  cio 6490  Fun wfun 6534  cfv 6540  crio 7360  1oc1o 8455  2oc2o 8456   No csur 27132   <s cslt 27133   bday cbday 27134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-1o 8462  df-2o 8463  df-no 27135  df-slt 27136  df-bday 27137
This theorem is referenced by:  noetainflem3  27231  noetainflem4  27232  noetalem1  27233
  Copyright terms: Public domain W3C validator