Proof of Theorem noetainflem2
| Step | Hyp | Ref
| Expression |
| 1 | | noetainflem.2 |
. . . 4
⊢ 𝑊 = (𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
| 2 | 1 | reseq1i 5967 |
. . 3
⊢ (𝑊 ↾ dom 𝑇) = ((𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ↾ dom
𝑇) |
| 3 | | resundir 5986 |
. . 3
⊢ ((𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ↾ dom
𝑇) = ((𝑇 ↾ dom 𝑇) ∪ (((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) |
| 4 | 2, 3 | eqtri 2759 |
. 2
⊢ (𝑊 ↾ dom 𝑇) = ((𝑇 ↾ dom 𝑇) ∪ (((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) |
| 5 | | noetainflem.1 |
. . . . . 6
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 6 | 5 | noinfno 27687 |
. . . . 5
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → 𝑇 ∈ No ) |
| 7 | | nofun 27618 |
. . . . 5
⊢ (𝑇 ∈
No → Fun 𝑇) |
| 8 | | funrel 6558 |
. . . . 5
⊢ (Fun
𝑇 → Rel 𝑇) |
| 9 | | resdm 6018 |
. . . . 5
⊢ (Rel
𝑇 → (𝑇 ↾ dom 𝑇) = 𝑇) |
| 10 | 6, 7, 8, 9 | 4syl 19 |
. . . 4
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → (𝑇 ↾ dom
𝑇) = 𝑇) |
| 11 | | dmres 6004 |
. . . . . . 7
⊢ dom
(((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) = (dom 𝑇 ∩ dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
| 12 | | 2oex 8496 |
. . . . . . . . . . 11
⊢
2o ∈ V |
| 13 | 12 | snnz 4757 |
. . . . . . . . . 10
⊢
{2o} ≠ ∅ |
| 14 | | dmxp 5913 |
. . . . . . . . . 10
⊢
({2o} ≠ ∅ → dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) = (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢ dom ((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) = (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) |
| 16 | 15 | ineq2i 4197 |
. . . . . . . 8
⊢ (dom
𝑇 ∩ dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∩ (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) |
| 17 | | disjdif 4452 |
. . . . . . . 8
⊢ (dom
𝑇 ∩ (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) = ∅ |
| 18 | 16, 17 | eqtri 2759 |
. . . . . . 7
⊢ (dom
𝑇 ∩ dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) =
∅ |
| 19 | 11, 18 | eqtri 2759 |
. . . . . 6
⊢ dom
(((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) =
∅ |
| 20 | | relres 5997 |
. . . . . . 7
⊢ Rel
(((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) |
| 21 | | reldm0 5912 |
. . . . . . 7
⊢ (Rel
(((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) →
((((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) = ∅
↔ dom (((suc ∪ ( bday
“ 𝐴) ∖
dom 𝑇) ×
{2o}) ↾ dom 𝑇) = ∅)) |
| 22 | 20, 21 | ax-mp 5 |
. . . . . 6
⊢ ((((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅ ↔ dom (((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅) |
| 23 | 19, 22 | mpbir 231 |
. . . . 5
⊢ (((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅ |
| 24 | 23 | a1i 11 |
. . . 4
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → (((suc ∪ ( bday
“ 𝐴) ∖
dom 𝑇) ×
{2o}) ↾ dom 𝑇) = ∅) |
| 25 | 10, 24 | uneq12d 4149 |
. . 3
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → ((𝑇 ↾ dom
𝑇) ∪ (((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) = (𝑇 ∪ ∅)) |
| 26 | | un0 4374 |
. . 3
⊢ (𝑇 ∪ ∅) = 𝑇 |
| 27 | 25, 26 | eqtrdi 2787 |
. 2
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → ((𝑇 ↾ dom
𝑇) ∪ (((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) = 𝑇) |
| 28 | 4, 27 | eqtrid 2783 |
1
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → (𝑊 ↾ dom
𝑇) = 𝑇) |