Proof of Theorem noetainflem2
Step | Hyp | Ref
| Expression |
1 | | noetainflem.2 |
. . . 4
⊢ 𝑊 = (𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
2 | 1 | reseq1i 5876 |
. . 3
⊢ (𝑊 ↾ dom 𝑇) = ((𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ↾ dom
𝑇) |
3 | | resundir 5895 |
. . 3
⊢ ((𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ↾ dom
𝑇) = ((𝑇 ↾ dom 𝑇) ∪ (((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) |
4 | 2, 3 | eqtri 2766 |
. 2
⊢ (𝑊 ↾ dom 𝑇) = ((𝑇 ↾ dom 𝑇) ∪ (((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) |
5 | | noetainflem.1 |
. . . . . . 7
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
6 | 5 | noinfno 33848 |
. . . . . 6
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → 𝑇 ∈ No ) |
7 | | nofun 33779 |
. . . . . 6
⊢ (𝑇 ∈
No → Fun 𝑇) |
8 | 6, 7 | syl 17 |
. . . . 5
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → Fun 𝑇) |
9 | | funrel 6435 |
. . . . 5
⊢ (Fun
𝑇 → Rel 𝑇) |
10 | | resdm 5925 |
. . . . 5
⊢ (Rel
𝑇 → (𝑇 ↾ dom 𝑇) = 𝑇) |
11 | 8, 9, 10 | 3syl 18 |
. . . 4
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → (𝑇 ↾ dom
𝑇) = 𝑇) |
12 | | dmres 5902 |
. . . . . . 7
⊢ dom
(((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) = (dom 𝑇 ∩ dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
13 | | 2oex 8284 |
. . . . . . . . . . 11
⊢
2o ∈ V |
14 | 13 | snnz 4709 |
. . . . . . . . . 10
⊢
{2o} ≠ ∅ |
15 | | dmxp 5827 |
. . . . . . . . . 10
⊢
({2o} ≠ ∅ → dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) = (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . 9
⊢ dom ((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) = (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) |
17 | 16 | ineq2i 4140 |
. . . . . . . 8
⊢ (dom
𝑇 ∩ dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∩ (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) |
18 | | disjdif 4402 |
. . . . . . . 8
⊢ (dom
𝑇 ∩ (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) = ∅ |
19 | 17, 18 | eqtri 2766 |
. . . . . . 7
⊢ (dom
𝑇 ∩ dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) =
∅ |
20 | 12, 19 | eqtri 2766 |
. . . . . 6
⊢ dom
(((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) =
∅ |
21 | | relres 5909 |
. . . . . . 7
⊢ Rel
(((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) |
22 | | reldm0 5826 |
. . . . . . 7
⊢ (Rel
(((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) →
((((suc ∪ ( bday
“ 𝐴) ∖ dom
𝑇) × {2o})
↾ dom 𝑇) = ∅
↔ dom (((suc ∪ ( bday
“ 𝐴) ∖
dom 𝑇) ×
{2o}) ↾ dom 𝑇) = ∅)) |
23 | 21, 22 | ax-mp 5 |
. . . . . 6
⊢ ((((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅ ↔ dom (((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅) |
24 | 20, 23 | mpbir 230 |
. . . . 5
⊢ (((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅ |
25 | 24 | a1i 11 |
. . . 4
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → (((suc ∪ ( bday
“ 𝐴) ∖
dom 𝑇) ×
{2o}) ↾ dom 𝑇) = ∅) |
26 | 11, 25 | uneq12d 4094 |
. . 3
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → ((𝑇 ↾ dom
𝑇) ∪ (((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) = (𝑇 ∪ ∅)) |
27 | | un0 4321 |
. . 3
⊢ (𝑇 ∪ ∅) = 𝑇 |
28 | 26, 27 | eqtrdi 2795 |
. 2
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → ((𝑇 ↾ dom
𝑇) ∪ (((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) = 𝑇) |
29 | 4, 28 | syl5eq 2791 |
1
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → (𝑊 ↾ dom
𝑇) = 𝑇) |