MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetainflem2 Structured version   Visualization version   GIF version

Theorem noetainflem2 27648
Description: Lemma for noeta 27653. The restriction of 𝑊 to the domain of 𝑇 is 𝑇. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem2 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
Distinct variable group:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetainflem2
StepHypRef Expression
1 noetainflem.2 . . . 4 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
21reseq1i 5926 . . 3 (𝑊 ↾ dom 𝑇) = ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) ↾ dom 𝑇)
3 resundir 5945 . . 3 ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) ↾ dom 𝑇) = ((𝑇 ↾ dom 𝑇) ∪ (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇))
42, 3eqtri 2752 . 2 (𝑊 ↾ dom 𝑇) = ((𝑇 ↾ dom 𝑇) ∪ (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇))
5 noetainflem.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
65noinfno 27628 . . . . 5 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
7 nofun 27559 . . . . 5 (𝑇 No → Fun 𝑇)
8 funrel 6499 . . . . 5 (Fun 𝑇 → Rel 𝑇)
9 resdm 5977 . . . . 5 (Rel 𝑇 → (𝑇 ↾ dom 𝑇) = 𝑇)
106, 7, 8, 94syl 19 . . . 4 ((𝐵 No 𝐵 ∈ V) → (𝑇 ↾ dom 𝑇) = 𝑇)
11 dmres 5963 . . . . . . 7 dom (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = (dom 𝑇 ∩ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
12 2oex 8399 . . . . . . . . . . 11 2o ∈ V
1312snnz 4728 . . . . . . . . . 10 {2o} ≠ ∅
14 dmxp 5871 . . . . . . . . . 10 ({2o} ≠ ∅ → dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇))
1513, 14ax-mp 5 . . . . . . . . 9 dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇)
1615ineq2i 4168 . . . . . . . 8 (dom 𝑇 ∩ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇))
17 disjdif 4423 . . . . . . . 8 (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅
1816, 17eqtri 2752 . . . . . . 7 (dom 𝑇 ∩ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = ∅
1911, 18eqtri 2752 . . . . . 6 dom (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅
20 relres 5956 . . . . . . 7 Rel (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)
21 reldm0 5870 . . . . . . 7 (Rel (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) → ((((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅ ↔ dom (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅))
2220, 21ax-mp 5 . . . . . 6 ((((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅ ↔ dom (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅)
2319, 22mpbir 231 . . . . 5 (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅
2423a1i 11 . . . 4 ((𝐵 No 𝐵 ∈ V) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇) = ∅)
2510, 24uneq12d 4120 . . 3 ((𝐵 No 𝐵 ∈ V) → ((𝑇 ↾ dom 𝑇) ∪ (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) = (𝑇 ∪ ∅))
26 un0 4345 . . 3 (𝑇 ∪ ∅) = 𝑇
2725, 26eqtrdi 2780 . 2 ((𝐵 No 𝐵 ∈ V) → ((𝑇 ↾ dom 𝑇) ∪ (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) ↾ dom 𝑇)) = 𝑇)
284, 27eqtrid 2776 1 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577  cop 4583   cuni 4858   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  cres 5621  cima 5622  Rel wrel 5624  suc csuc 6309  cio 6436  Fun wfun 6476  cfv 6482  crio 7305  1oc1o 8381  2oc2o 8382   No csur 27549   <s cslt 27550   bday cbday 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-riota 7306  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554
This theorem is referenced by:  noetainflem3  27649  noetainflem4  27650  noetalem1  27651
  Copyright terms: Public domain W3C validator