Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goalrlem Structured version   Visualization version   GIF version

Theorem goalrlem 34375
Description: Lemma for goalr 34376 (induction step). (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goalrlem (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
Distinct variable groups:   𝑖,𝑁   𝑖,𝑎
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem goalrlem
Dummy variables 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7877 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
2 df-goal 34321 . . . . . 6 𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩
3 opex 5463 . . . . . 6 ⟨2o, ⟨𝑖, 𝑎⟩⟩ ∈ V
42, 3eqeltri 2829 . . . . 5 𝑔𝑖𝑎 ∈ V
5 isfmlasuc 34367 . . . . 5 ((suc 𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ V) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
61, 4, 5sylancl 586 . . . 4 (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
76adantr 481 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
8 fmlasssuc 34368 . . . . . . . . . 10 (suc 𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
91, 8syl 17 . . . . . . . . 9 (𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
109sseld 3980 . . . . . . . 8 (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1110com12 32 . . . . . . 7 (𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1211imim2i 16 . . . . . 6 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1312com23 86 . . . . 5 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1413impcom 408 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
15 gonanegoal 34331 . . . . . . . . . . 11 (𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎
16 eqneqall 2951 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎 → ((𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁)))
1715, 16mpi 20 . . . . . . . . . 10 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁))
1817eqcoms 2740 . . . . . . . . 9 (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁))
1918a1i 11 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
2019rexlimdva 3155 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
21 df-goal 34321 . . . . . . . . . . . . 13 𝑔𝑗𝑢 = ⟨2o, ⟨𝑗, 𝑢⟩⟩
222, 21eqeq12i 2750 . . . . . . . . . . . 12 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩)
23 2oex 8473 . . . . . . . . . . . . 13 2o ∈ V
24 opex 5463 . . . . . . . . . . . . 13 𝑖, 𝑎⟩ ∈ V
2523, 24opth 5475 . . . . . . . . . . . 12 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
2622, 25bitri 274 . . . . . . . . . . 11 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
27 vex 3478 . . . . . . . . . . . . 13 𝑖 ∈ V
28 vex 3478 . . . . . . . . . . . . 13 𝑎 ∈ V
2927, 28opth 5475 . . . . . . . . . . . 12 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ ↔ (𝑖 = 𝑗𝑎 = 𝑢))
30 eleq1w 2816 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3130eqcoms 2740 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3231, 11syl6bi 252 . . . . . . . . . . . . 13 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
3332impcomd 412 . . . . . . . . . . . 12 (𝑎 = 𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3429, 33simplbiim 505 . . . . . . . . . . 11 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3526, 34simplbiim 505 . . . . . . . . . 10 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3635com12 32 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3736adantr 481 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3837rexlimdva 3155 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3920, 38jaod 857 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4039rexlimdva 3155 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4140adantr 481 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4214, 41jaod 857 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
437, 42sylbid 239 . 2 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4443ex 413 1 (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wrex 3070  Vcvv 3474  wss 3947  cop 4633  suc csuc 6363  cfv 6540  (class class class)co 7405  ωcom 7851  2oc2o 8456  𝑔cgna 34313  𝑔cgol 34314  Fmlacfmla 34316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-map 8818  df-goel 34319  df-gona 34320  df-goal 34321  df-sat 34322  df-fmla 34324
This theorem is referenced by:  goalr  34376
  Copyright terms: Public domain W3C validator