Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goalrlem Structured version   Visualization version   GIF version

Theorem goalrlem 35418
Description: Lemma for goalr 35419 (induction step). (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goalrlem (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
Distinct variable groups:   𝑖,𝑁   𝑖,𝑎
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem goalrlem
Dummy variables 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7886 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
2 df-goal 35364 . . . . . 6 𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩
3 opex 5439 . . . . . 6 ⟨2o, ⟨𝑖, 𝑎⟩⟩ ∈ V
42, 3eqeltri 2830 . . . . 5 𝑔𝑖𝑎 ∈ V
5 isfmlasuc 35410 . . . . 5 ((suc 𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ V) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
61, 4, 5sylancl 586 . . . 4 (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
76adantr 480 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
8 fmlasssuc 35411 . . . . . . . . . 10 (suc 𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
91, 8syl 17 . . . . . . . . 9 (𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
109sseld 3957 . . . . . . . 8 (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1110com12 32 . . . . . . 7 (𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1211imim2i 16 . . . . . 6 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1312com23 86 . . . . 5 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1413impcom 407 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
15 gonanegoal 35374 . . . . . . . . . . 11 (𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎
16 eqneqall 2943 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎 → ((𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁)))
1715, 16mpi 20 . . . . . . . . . 10 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁))
1817eqcoms 2743 . . . . . . . . 9 (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁))
1918a1i 11 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
2019rexlimdva 3141 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
21 df-goal 35364 . . . . . . . . . . . . 13 𝑔𝑗𝑢 = ⟨2o, ⟨𝑗, 𝑢⟩⟩
222, 21eqeq12i 2753 . . . . . . . . . . . 12 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩)
23 2oex 8491 . . . . . . . . . . . . 13 2o ∈ V
24 opex 5439 . . . . . . . . . . . . 13 𝑖, 𝑎⟩ ∈ V
2523, 24opth 5451 . . . . . . . . . . . 12 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
2622, 25bitri 275 . . . . . . . . . . 11 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
27 vex 3463 . . . . . . . . . . . . 13 𝑖 ∈ V
28 vex 3463 . . . . . . . . . . . . 13 𝑎 ∈ V
2927, 28opth 5451 . . . . . . . . . . . 12 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ ↔ (𝑖 = 𝑗𝑎 = 𝑢))
30 eleq1w 2817 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3130eqcoms 2743 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3231, 11biimtrdi 253 . . . . . . . . . . . . 13 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
3332impcomd 411 . . . . . . . . . . . 12 (𝑎 = 𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3429, 33simplbiim 504 . . . . . . . . . . 11 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3526, 34simplbiim 504 . . . . . . . . . 10 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3635com12 32 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3736adantr 480 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3837rexlimdva 3141 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3920, 38jaod 859 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4039rexlimdva 3141 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4140adantr 480 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4214, 41jaod 859 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
437, 42sylbid 240 . 2 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4443ex 412 1 (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  wss 3926  cop 4607  suc csuc 6354  cfv 6531  (class class class)co 7405  ωcom 7861  2oc2o 8474  𝑔cgna 35356  𝑔cgol 35357  Fmlacfmla 35359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-map 8842  df-goel 35362  df-gona 35363  df-goal 35364  df-sat 35365  df-fmla 35367
This theorem is referenced by:  goalr  35419
  Copyright terms: Public domain W3C validator