Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goalrlem Structured version   Visualization version   GIF version

Theorem goalrlem 32888
 Description: Lemma for goalr 32889 (induction step). (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goalrlem (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
Distinct variable groups:   𝑖,𝑁   𝑖,𝑎
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem goalrlem
Dummy variables 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7608 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
2 df-goal 32834 . . . . . 6 𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩
3 opex 5329 . . . . . 6 ⟨2o, ⟨𝑖, 𝑎⟩⟩ ∈ V
42, 3eqeltri 2849 . . . . 5 𝑔𝑖𝑎 ∈ V
5 isfmlasuc 32880 . . . . 5 ((suc 𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ V) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
61, 4, 5sylancl 589 . . . 4 (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
76adantr 484 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
8 fmlasssuc 32881 . . . . . . . . . 10 (suc 𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
91, 8syl 17 . . . . . . . . 9 (𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
109sseld 3894 . . . . . . . 8 (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1110com12 32 . . . . . . 7 (𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1211imim2i 16 . . . . . 6 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1312com23 86 . . . . 5 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1413impcom 411 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
15 gonanegoal 32844 . . . . . . . . . . 11 (𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎
16 eqneqall 2963 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎 → ((𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁)))
1715, 16mpi 20 . . . . . . . . . 10 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁))
1817eqcoms 2767 . . . . . . . . 9 (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁))
1918a1i 11 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
2019rexlimdva 3209 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
21 df-goal 32834 . . . . . . . . . . . . 13 𝑔𝑗𝑢 = ⟨2o, ⟨𝑗, 𝑢⟩⟩
222, 21eqeq12i 2774 . . . . . . . . . . . 12 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩)
23 2oex 8129 . . . . . . . . . . . . 13 2o ∈ V
24 opex 5329 . . . . . . . . . . . . 13 𝑖, 𝑎⟩ ∈ V
2523, 24opth 5341 . . . . . . . . . . . 12 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
2622, 25bitri 278 . . . . . . . . . . 11 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
27 vex 3414 . . . . . . . . . . . . 13 𝑖 ∈ V
28 vex 3414 . . . . . . . . . . . . 13 𝑎 ∈ V
2927, 28opth 5341 . . . . . . . . . . . 12 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ ↔ (𝑖 = 𝑗𝑎 = 𝑢))
30 eleq1w 2835 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3130eqcoms 2767 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3231, 11syl6bi 256 . . . . . . . . . . . . 13 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
3332impcomd 415 . . . . . . . . . . . 12 (𝑎 = 𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3429, 33simplbiim 508 . . . . . . . . . . 11 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3526, 34simplbiim 508 . . . . . . . . . 10 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3635com12 32 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3736adantr 484 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3837rexlimdva 3209 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3920, 38jaod 856 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4039rexlimdva 3209 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4140adantr 484 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4214, 41jaod 856 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
437, 42sylbid 243 . 2 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4443ex 416 1 (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∃wrex 3072  Vcvv 3410   ⊆ wss 3861  ⟨cop 4532  suc csuc 6177  ‘cfv 6341  (class class class)co 7157  ωcom 7586  2oc2o 8113  ⊼𝑔cgna 32826  ∀𝑔cgol 32827  Fmlacfmla 32829 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-map 8425  df-goel 32832  df-gona 32833  df-goal 32834  df-sat 32835  df-fmla 32837 This theorem is referenced by:  goalr  32889
 Copyright terms: Public domain W3C validator