Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goalrlem Structured version   Visualization version   GIF version

Theorem goalrlem 35401
Description: Lemma for goalr 35402 (induction step). (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goalrlem (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
Distinct variable groups:   𝑖,𝑁   𝑖,𝑎
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem goalrlem
Dummy variables 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7912 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
2 df-goal 35347 . . . . . 6 𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩
3 opex 5469 . . . . . 6 ⟨2o, ⟨𝑖, 𝑎⟩⟩ ∈ V
42, 3eqeltri 2837 . . . . 5 𝑔𝑖𝑎 ∈ V
5 isfmlasuc 35393 . . . . 5 ((suc 𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ V) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
61, 4, 5sylancl 586 . . . 4 (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
76adantr 480 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
8 fmlasssuc 35394 . . . . . . . . . 10 (suc 𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
91, 8syl 17 . . . . . . . . 9 (𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
109sseld 3982 . . . . . . . 8 (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1110com12 32 . . . . . . 7 (𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1211imim2i 16 . . . . . 6 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1312com23 86 . . . . 5 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1413impcom 407 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
15 gonanegoal 35357 . . . . . . . . . . 11 (𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎
16 eqneqall 2951 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎 → ((𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁)))
1715, 16mpi 20 . . . . . . . . . 10 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁))
1817eqcoms 2745 . . . . . . . . 9 (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁))
1918a1i 11 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
2019rexlimdva 3155 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
21 df-goal 35347 . . . . . . . . . . . . 13 𝑔𝑗𝑢 = ⟨2o, ⟨𝑗, 𝑢⟩⟩
222, 21eqeq12i 2755 . . . . . . . . . . . 12 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩)
23 2oex 8517 . . . . . . . . . . . . 13 2o ∈ V
24 opex 5469 . . . . . . . . . . . . 13 𝑖, 𝑎⟩ ∈ V
2523, 24opth 5481 . . . . . . . . . . . 12 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
2622, 25bitri 275 . . . . . . . . . . 11 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
27 vex 3484 . . . . . . . . . . . . 13 𝑖 ∈ V
28 vex 3484 . . . . . . . . . . . . 13 𝑎 ∈ V
2927, 28opth 5481 . . . . . . . . . . . 12 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ ↔ (𝑖 = 𝑗𝑎 = 𝑢))
30 eleq1w 2824 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3130eqcoms 2745 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3231, 11biimtrdi 253 . . . . . . . . . . . . 13 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
3332impcomd 411 . . . . . . . . . . . 12 (𝑎 = 𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3429, 33simplbiim 504 . . . . . . . . . . 11 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3526, 34simplbiim 504 . . . . . . . . . 10 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3635com12 32 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3736adantr 480 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3837rexlimdva 3155 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3920, 38jaod 860 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4039rexlimdva 3155 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4140adantr 480 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4214, 41jaod 860 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
437, 42sylbid 240 . 2 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4443ex 412 1 (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  wss 3951  cop 4632  suc csuc 6386  cfv 6561  (class class class)co 7431  ωcom 7887  2oc2o 8500  𝑔cgna 35339  𝑔cgol 35340  Fmlacfmla 35342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-map 8868  df-goel 35345  df-gona 35346  df-goal 35347  df-sat 35348  df-fmla 35350
This theorem is referenced by:  goalr  35402
  Copyright terms: Public domain W3C validator