Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goalrlem Structured version   Visualization version   GIF version

Theorem goalrlem 35381
Description: Lemma for goalr 35382 (induction step). (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goalrlem (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
Distinct variable groups:   𝑖,𝑁   𝑖,𝑎
Allowed substitution hint:   𝑁(𝑎)

Proof of Theorem goalrlem
Dummy variables 𝑗 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7913 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
2 df-goal 35327 . . . . . 6 𝑔𝑖𝑎 = ⟨2o, ⟨𝑖, 𝑎⟩⟩
3 opex 5475 . . . . . 6 ⟨2o, ⟨𝑖, 𝑎⟩⟩ ∈ V
42, 3eqeltri 2835 . . . . 5 𝑔𝑖𝑎 ∈ V
5 isfmlasuc 35373 . . . . 5 ((suc 𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ V) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
61, 4, 5sylancl 586 . . . 4 (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
76adantr 480 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) ↔ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢))))
8 fmlasssuc 35374 . . . . . . . . . 10 (suc 𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
91, 8syl 17 . . . . . . . . 9 (𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
109sseld 3994 . . . . . . . 8 (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1110com12 32 . . . . . . 7 (𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
1211imim2i 16 . . . . . 6 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1312com23 86 . . . . 5 ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
1413impcom 407 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
15 gonanegoal 35337 . . . . . . . . . . 11 (𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎
16 eqneqall 2949 . . . . . . . . . . 11 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎 → ((𝑢𝑔𝑣) ≠ ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁)))
1715, 16mpi 20 . . . . . . . . . 10 ((𝑢𝑔𝑣) = ∀𝑔𝑖𝑎𝑎 ∈ (Fmla‘suc suc 𝑁))
1817eqcoms 2743 . . . . . . . . 9 (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁))
1918a1i 11 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
2019rexlimdva 3153 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
21 df-goal 35327 . . . . . . . . . . . . 13 𝑔𝑗𝑢 = ⟨2o, ⟨𝑗, 𝑢⟩⟩
222, 21eqeq12i 2753 . . . . . . . . . . . 12 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ ⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩)
23 2oex 8516 . . . . . . . . . . . . 13 2o ∈ V
24 opex 5475 . . . . . . . . . . . . 13 𝑖, 𝑎⟩ ∈ V
2523, 24opth 5487 . . . . . . . . . . . 12 (⟨2o, ⟨𝑖, 𝑎⟩⟩ = ⟨2o, ⟨𝑗, 𝑢⟩⟩ ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
2622, 25bitri 275 . . . . . . . . . . 11 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 ↔ (2o = 2o ∧ ⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩))
27 vex 3482 . . . . . . . . . . . . 13 𝑖 ∈ V
28 vex 3482 . . . . . . . . . . . . 13 𝑎 ∈ V
2927, 28opth 5487 . . . . . . . . . . . 12 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ ↔ (𝑖 = 𝑗𝑎 = 𝑢))
30 eleq1w 2822 . . . . . . . . . . . . . . 15 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3130eqcoms 2743 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
3231, 11biimtrdi 253 . . . . . . . . . . . . 13 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
3332impcomd 411 . . . . . . . . . . . 12 (𝑎 = 𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3429, 33simplbiim 504 . . . . . . . . . . 11 (⟨𝑖, 𝑎⟩ = ⟨𝑗, 𝑢⟩ → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3526, 34simplbiim 504 . . . . . . . . . 10 (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢 → ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
3635com12 32 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3736adantr 480 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑗 ∈ ω) → (∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3837rexlimdva 3153 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢𝑎 ∈ (Fmla‘suc suc 𝑁)))
3920, 38jaod 859 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4039rexlimdva 3153 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4140adantr 480 . . . 4 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4214, 41jaod 859 . . 3 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)∀𝑔𝑖𝑎 = (𝑢𝑔𝑣) ∨ ∃𝑗 ∈ ω ∀𝑔𝑖𝑎 = ∀𝑔𝑗𝑢)) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
437, 42sylbid 240 . 2 ((𝑁 ∈ ω ∧ (∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁))) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
4443ex 412 1 (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wrex 3068  Vcvv 3478  wss 3963  cop 4637  suc csuc 6388  cfv 6563  (class class class)co 7431  ωcom 7887  2oc2o 8499  𝑔cgna 35319  𝑔cgol 35320  Fmlacfmla 35322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-map 8867  df-goel 35325  df-gona 35326  df-goal 35327  df-sat 35328  df-fmla 35330
This theorem is referenced by:  goalr  35382
  Copyright terms: Public domain W3C validator