![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noetainflem1 | Structured version Visualization version GIF version |
Description: Lemma for noeta 27689. Establish that this particular construction gives a surreal. (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
noetainflem.1 | ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
noetainflem.2 | ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
Ref | Expression |
---|---|
noetainflem1 | ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑊 ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noetainflem.2 | . 2 ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) | |
2 | noetainflem.1 | . . . . 5 ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | |
3 | 2 | noinfno 27664 | . . . 4 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑇 ∈ No ) |
4 | 3 | 3adant1 1127 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑇 ∈ No ) |
5 | bdayimaon 27639 | . . . 4 ⊢ (𝐴 ∈ V → suc ∪ ( bday “ 𝐴) ∈ On) | |
6 | 5 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → suc ∪ ( bday “ 𝐴) ∈ On) |
7 | 2oex 8491 | . . . . 5 ⊢ 2o ∈ V | |
8 | 7 | prid2 4764 | . . . 4 ⊢ 2o ∈ {1o, 2o} |
9 | 8 | noextendseq 27613 | . . 3 ⊢ ((𝑇 ∈ No ∧ suc ∪ ( bday “ 𝐴) ∈ On) → (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ∈ No ) |
10 | 4, 6, 9 | syl2anc 582 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ∈ No ) |
11 | 1, 10 | eqeltrid 2829 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑊 ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {cab 2702 ∀wral 3051 ∃wrex 3060 Vcvv 3463 ∖ cdif 3938 ∪ cun 3939 ⊆ wss 3941 ifcif 4525 {csn 4625 ⟨cop 4631 ∪ cuni 4904 class class class wbr 5144 ↦ cmpt 5227 × cxp 5671 dom cdm 5673 ↾ cres 5675 “ cima 5676 Oncon0 6365 suc csuc 6367 ℩cio 6493 ‘cfv 6543 ℩crio 7368 1oc1o 8473 2oc2o 8474 No csur 27586 <s cslt 27587 bday cbday 27588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-1o 8480 df-2o 8481 df-no 27589 df-slt 27590 df-bday 27591 |
This theorem is referenced by: noetainflem3 27685 noetainflem4 27686 noetalem1 27687 |
Copyright terms: Public domain | W3C validator |