MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetainflem1 Structured version   Visualization version   GIF version

Theorem noetainflem1 27240
Description: Lemma for noeta 27246. Establish that this particular construction gives a surreal. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem1 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
Distinct variable group:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetainflem1
StepHypRef Expression
1 noetainflem.2 . 2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
2 noetainflem.1 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32noinfno 27221 . . . 4 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
433adant1 1131 . . 3 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑇 No )
5 bdayimaon 27196 . . . 4 (𝐴 ∈ V → suc ( bday 𝐴) ∈ On)
653ad2ant1 1134 . . 3 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → suc ( bday 𝐴) ∈ On)
7 2oex 8477 . . . . 5 2o ∈ V
87prid2 4768 . . . 4 2o ∈ {1o, 2o}
98noextendseq 27170 . . 3 ((𝑇 No ∧ suc ( bday 𝐴) ∈ On) → (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) ∈ No )
104, 6, 9syl2anc 585 . 2 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) ∈ No )
111, 10eqeltrid 2838 1 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  Vcvv 3475  cdif 3946  cun 3947  wss 3949  ifcif 4529  {csn 4629  cop 4635   cuni 4909   class class class wbr 5149  cmpt 5232   × cxp 5675  dom cdm 5677  cres 5679  cima 5680  Oncon0 6365  suc csuc 6367  cio 6494  cfv 6544  crio 7364  1oc1o 8459  2oc2o 8460   No csur 27143   <s cslt 27144   bday cbday 27145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147  df-bday 27148
This theorem is referenced by:  noetainflem3  27242  noetainflem4  27243  noetalem1  27244
  Copyright terms: Public domain W3C validator