| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noetainflem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for noeta 27788. Establish that this particular construction gives a surreal. (Contributed by Scott Fenton, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| noetainflem.1 | ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| noetainflem.2 | ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
| Ref | Expression |
|---|---|
| noetainflem1 | ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑊 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noetainflem.2 | . 2 ⊢ 𝑊 = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) | |
| 2 | noetainflem.1 | . . . . 5 ⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | |
| 3 | 2 | noinfno 27763 | . . . 4 ⊢ ((𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑇 ∈ No ) |
| 4 | 3 | 3adant1 1131 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑇 ∈ No ) |
| 5 | bdayimaon 27738 | . . . 4 ⊢ (𝐴 ∈ V → suc ∪ ( bday “ 𝐴) ∈ On) | |
| 6 | 5 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → suc ∪ ( bday “ 𝐴) ∈ On) |
| 7 | 2oex 8517 | . . . . 5 ⊢ 2o ∈ V | |
| 8 | 7 | prid2 4763 | . . . 4 ⊢ 2o ∈ {1o, 2o} |
| 9 | 8 | noextendseq 27712 | . . 3 ⊢ ((𝑇 ∈ No ∧ suc ∪ ( bday “ 𝐴) ∈ On) → (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ∈ No ) |
| 10 | 4, 6, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) ∈ No ) |
| 11 | 1, 10 | eqeltrid 2845 | 1 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ No ∧ 𝐵 ∈ V) → 𝑊 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ∖ cdif 3948 ∪ cun 3949 ⊆ wss 3951 ifcif 4525 {csn 4626 〈cop 4632 ∪ cuni 4907 class class class wbr 5143 ↦ cmpt 5225 × cxp 5683 dom cdm 5685 ↾ cres 5687 “ cima 5688 Oncon0 6384 suc csuc 6386 ℩cio 6512 ‘cfv 6561 ℩crio 7387 1oc1o 8499 2oc2o 8500 No csur 27684 <s cslt 27685 bday cbday 27686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 df-riota 7388 df-1o 8506 df-2o 8507 df-no 27687 df-slt 27688 df-bday 27689 |
| This theorem is referenced by: noetainflem3 27784 noetainflem4 27785 noetalem1 27786 |
| Copyright terms: Public domain | W3C validator |