Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem8 | Structured version Visualization version GIF version |
Description: Lemma for kur14 33178. Show that the set 𝑇 contains at most 14 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 14 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 14 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | ⊢ 𝐽 ∈ Top |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
kur14lem.b | ⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) |
kur14lem.c | ⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) |
kur14lem.d | ⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) |
kur14lem.t | ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
Ref | Expression |
---|---|
kur14lem8 | ⊢ (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ ;14) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.t | . 2 ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) | |
2 | eqid 2738 | . . 3 ⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) = (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) | |
3 | eqid 2738 | . . . 4 ⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) = ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) | |
4 | hashtplei 14198 | . . . 4 ⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∈ Fin ∧ (♯‘{𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)}) ≤ 3) | |
5 | hashtplei 14198 | . . . 4 ⊢ ({𝐵, 𝐶, (𝐼‘𝐴)} ∈ Fin ∧ (♯‘{𝐵, 𝐶, (𝐼‘𝐴)}) ≤ 3) | |
6 | 3nn0 12251 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | 3p3e6 12125 | . . . 4 ⊢ (3 + 3) = 6 | |
8 | 3, 4, 5, 6, 6, 7 | hashunlei 14140 | . . 3 ⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∈ Fin ∧ (♯‘({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)})) ≤ 6) |
9 | hashtplei 14198 | . . 3 ⊢ ({(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} ∈ Fin ∧ (♯‘{(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ≤ 3) | |
10 | 6nn0 12254 | . . 3 ⊢ 6 ∈ ℕ0 | |
11 | 6p3e9 12133 | . . 3 ⊢ (6 + 3) = 9 | |
12 | 2, 8, 9, 10, 6, 11 | hashunlei 14140 | . 2 ⊢ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∈ Fin ∧ (♯‘(({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))})) ≤ 9) |
13 | eqid 2738 | . . 3 ⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) = ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) | |
14 | hashtplei 14198 | . . 3 ⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∈ Fin ∧ (♯‘{(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))}) ≤ 3) | |
15 | hashprlei 14182 | . . 3 ⊢ ({(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} ∈ Fin ∧ (♯‘{(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ≤ 2) | |
16 | 2nn0 12250 | . . 3 ⊢ 2 ∈ ℕ0 | |
17 | 3p2e5 12124 | . . 3 ⊢ (3 + 2) = 5 | |
18 | 13, 14, 15, 6, 16, 17 | hashunlei 14140 | . 2 ⊢ (({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ∈ Fin ∧ (♯‘({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) ≤ 5) |
19 | 9nn0 12257 | . 2 ⊢ 9 ∈ ℕ0 | |
20 | 5nn0 12253 | . 2 ⊢ 5 ∈ ℕ0 | |
21 | 9p5e14 12527 | . 2 ⊢ (9 + 5) = ;14 | |
22 | 1, 12, 18, 19, 20, 21 | hashunlei 14140 | 1 ⊢ (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ ;14) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 {cpr 4563 {ctp 4565 ∪ cuni 4839 class class class wbr 5074 ‘cfv 6433 Fincfn 8733 1c1 10872 ≤ cle 11010 2c2 12028 3c3 12029 4c4 12030 5c5 12031 6c6 12032 9c9 12035 ;cdc 12437 ♯chash 14044 Topctop 22042 intcnt 22168 clsccl 22169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-hash 14045 |
This theorem is referenced by: kur14lem9 33176 |
Copyright terms: Public domain | W3C validator |