Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem8 | Structured version Visualization version GIF version |
Description: Lemma for kur14 33078. Show that the set 𝑇 contains at most 14 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 14 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 14 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | ⊢ 𝐽 ∈ Top |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
kur14lem.b | ⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) |
kur14lem.c | ⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) |
kur14lem.d | ⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) |
kur14lem.t | ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
Ref | Expression |
---|---|
kur14lem8 | ⊢ (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ ;14) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.t | . 2 ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) | |
2 | eqid 2738 | . . 3 ⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) = (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) | |
3 | eqid 2738 | . . . 4 ⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) = ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) | |
4 | hashtplei 14126 | . . . 4 ⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∈ Fin ∧ (♯‘{𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)}) ≤ 3) | |
5 | hashtplei 14126 | . . . 4 ⊢ ({𝐵, 𝐶, (𝐼‘𝐴)} ∈ Fin ∧ (♯‘{𝐵, 𝐶, (𝐼‘𝐴)}) ≤ 3) | |
6 | 3nn0 12181 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | 3p3e6 12055 | . . . 4 ⊢ (3 + 3) = 6 | |
8 | 3, 4, 5, 6, 6, 7 | hashunlei 14068 | . . 3 ⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∈ Fin ∧ (♯‘({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)})) ≤ 6) |
9 | hashtplei 14126 | . . 3 ⊢ ({(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} ∈ Fin ∧ (♯‘{(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ≤ 3) | |
10 | 6nn0 12184 | . . 3 ⊢ 6 ∈ ℕ0 | |
11 | 6p3e9 12063 | . . 3 ⊢ (6 + 3) = 9 | |
12 | 2, 8, 9, 10, 6, 11 | hashunlei 14068 | . 2 ⊢ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∈ Fin ∧ (♯‘(({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))})) ≤ 9) |
13 | eqid 2738 | . . 3 ⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) = ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) | |
14 | hashtplei 14126 | . . 3 ⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∈ Fin ∧ (♯‘{(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))}) ≤ 3) | |
15 | hashprlei 14110 | . . 3 ⊢ ({(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} ∈ Fin ∧ (♯‘{(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ≤ 2) | |
16 | 2nn0 12180 | . . 3 ⊢ 2 ∈ ℕ0 | |
17 | 3p2e5 12054 | . . 3 ⊢ (3 + 2) = 5 | |
18 | 13, 14, 15, 6, 16, 17 | hashunlei 14068 | . 2 ⊢ (({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ∈ Fin ∧ (♯‘({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) ≤ 5) |
19 | 9nn0 12187 | . 2 ⊢ 9 ∈ ℕ0 | |
20 | 5nn0 12183 | . 2 ⊢ 5 ∈ ℕ0 | |
21 | 9p5e14 12456 | . 2 ⊢ (9 + 5) = ;14 | |
22 | 1, 12, 18, 19, 20, 21 | hashunlei 14068 | 1 ⊢ (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ ;14) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 {cpr 4560 {ctp 4562 ∪ cuni 4836 class class class wbr 5070 ‘cfv 6418 Fincfn 8691 1c1 10803 ≤ cle 10941 2c2 11958 3c3 11959 4c4 11960 5c5 11961 6c6 11962 9c9 11965 ;cdc 12366 ♯chash 13972 Topctop 21950 intcnt 22076 clsccl 22077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: kur14lem9 33076 |
Copyright terms: Public domain | W3C validator |