| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35221. Show that the set 𝑇 contains at most 14 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 14 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 14 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem.j | ⊢ 𝐽 ∈ Top |
| kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
| kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
| kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
| kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
| kur14lem.b | ⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) |
| kur14lem.c | ⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) |
| kur14lem.d | ⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) |
| kur14lem.t | ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) |
| Ref | Expression |
|---|---|
| kur14lem8 | ⊢ (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ ;14) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem.t | . 2 ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) | |
| 2 | eqid 2737 | . . 3 ⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) = (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) | |
| 3 | eqid 2737 | . . . 4 ⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) = ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) | |
| 4 | hashtplei 14523 | . . . 4 ⊢ ({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∈ Fin ∧ (♯‘{𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)}) ≤ 3) | |
| 5 | hashtplei 14523 | . . . 4 ⊢ ({𝐵, 𝐶, (𝐼‘𝐴)} ∈ Fin ∧ (♯‘{𝐵, 𝐶, (𝐼‘𝐴)}) ≤ 3) | |
| 6 | 3nn0 12544 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 7 | 3p3e6 12418 | . . . 4 ⊢ (3 + 3) = 6 | |
| 8 | 3, 4, 5, 6, 6, 7 | hashunlei 14464 | . . 3 ⊢ (({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∈ Fin ∧ (♯‘({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)})) ≤ 6) |
| 9 | hashtplei 14523 | . . 3 ⊢ ({(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))} ∈ Fin ∧ (♯‘{(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ≤ 3) | |
| 10 | 6nn0 12547 | . . 3 ⊢ 6 ∈ ℕ0 | |
| 11 | 6p3e9 12426 | . . 3 ⊢ (6 + 3) = 9 | |
| 12 | 2, 8, 9, 10, 6, 11 | hashunlei 14464 | . 2 ⊢ ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∈ Fin ∧ (♯‘(({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))})) ≤ 9) |
| 13 | eqid 2737 | . . 3 ⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) = ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) | |
| 14 | hashtplei 14523 | . . 3 ⊢ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∈ Fin ∧ (♯‘{(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))}) ≤ 3) | |
| 15 | hashprlei 14507 | . . 3 ⊢ ({(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))} ∈ Fin ∧ (♯‘{(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ≤ 2) | |
| 16 | 2nn0 12543 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 17 | 3p2e5 12417 | . . 3 ⊢ (3 + 2) = 5 | |
| 18 | 13, 14, 15, 6, 16, 17 | hashunlei 14464 | . 2 ⊢ (({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))}) ∈ Fin ∧ (♯‘({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) ≤ 5) |
| 19 | 9nn0 12550 | . 2 ⊢ 9 ∈ ℕ0 | |
| 20 | 5nn0 12546 | . 2 ⊢ 5 ∈ ℕ0 | |
| 21 | 9p5e14 12823 | . 2 ⊢ (9 + 5) = ;14 | |
| 22 | 1, 12, 18, 19, 20, 21 | hashunlei 14464 | 1 ⊢ (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ ;14) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 ∪ cun 3949 ⊆ wss 3951 {cpr 4628 {ctp 4630 ∪ cuni 4907 class class class wbr 5143 ‘cfv 6561 Fincfn 8985 1c1 11156 ≤ cle 11296 2c2 12321 3c3 12322 4c4 12323 5c5 12324 6c6 12325 9c9 12328 ;cdc 12733 ♯chash 14369 Topctop 22899 intcnt 23025 clsccl 23026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-hash 14370 |
| This theorem is referenced by: kur14lem9 35219 |
| Copyright terms: Public domain | W3C validator |