Proof of Theorem ex-decpmul
Step | Hyp | Ref
| Expression |
1 | | 2nn0 12180 |
. . 3
⊢ 2 ∈
ℕ0 |
2 | | 3nn0 12181 |
. . 3
⊢ 3 ∈
ℕ0 |
3 | 1, 2 | deccl 12381 |
. 2
⊢ ;23 ∈
ℕ0 |
4 | | 5nn0 12183 |
. 2
⊢ 5 ∈
ℕ0 |
5 | | 7nn0 12185 |
. . 3
⊢ 7 ∈
ℕ0 |
6 | | 1nn0 12179 |
. . 3
⊢ 1 ∈
ℕ0 |
7 | 5, 6 | deccl 12381 |
. 2
⊢ ;71 ∈
ℕ0 |
8 | | eqid 2738 |
. . 3
⊢ ;71 = ;71 |
9 | | 6nn0 12184 |
. . . . 5
⊢ 6 ∈
ℕ0 |
10 | 6, 9 | deccl 12381 |
. . . 4
⊢ ;16 ∈
ℕ0 |
11 | | eqid 2738 |
. . . . 5
⊢ ;23 = ;23 |
12 | | 4nn0 12182 |
. . . . . 6
⊢ 4 ∈
ℕ0 |
13 | | 7cn 11997 |
. . . . . . 7
⊢ 7 ∈
ℂ |
14 | | 2cn 11978 |
. . . . . . 7
⊢ 2 ∈
ℂ |
15 | | 7t2e14 12475 |
. . . . . . 7
⊢ (7
· 2) = ;14 |
16 | 13, 14, 15 | mulcomli 10915 |
. . . . . 6
⊢ (2
· 7) = ;14 |
17 | | 4p2e6 12056 |
. . . . . 6
⊢ (4 + 2) =
6 |
18 | 6, 12, 1, 16, 17 | decaddi 12426 |
. . . . 5
⊢ ((2
· 7) + 2) = ;16 |
19 | | 3cn 11984 |
. . . . . 6
⊢ 3 ∈
ℂ |
20 | | 7t3e21 12476 |
. . . . . 6
⊢ (7
· 3) = ;21 |
21 | 13, 19, 20 | mulcomli 10915 |
. . . . 5
⊢ (3
· 7) = ;21 |
22 | 5, 1, 2, 11, 6, 1,
18, 21 | decmul1c 12431 |
. . . 4
⊢ (;23 · 7) = ;;161 |
23 | | 1p2e3 12046 |
. . . 4
⊢ (1 + 2) =
3 |
24 | 10, 6, 1, 22, 23 | decaddi 12426 |
. . 3
⊢ ((;23 · 7) + 2) = ;;163 |
25 | 3 | nn0cni 12175 |
. . . 4
⊢ ;23 ∈ ℂ |
26 | 25 | mulid1i 10910 |
. . 3
⊢ (;23 · 1) = ;23 |
27 | 3, 5, 6, 8, 2, 1, 24, 26 | decmul2c 12432 |
. 2
⊢ (;23 · ;71) = ;;;1633 |
28 | 2, 4 | deccl 12381 |
. . 3
⊢ ;35 ∈
ℕ0 |
29 | 7 | nn0cni 12175 |
. . . 4
⊢ ;71 ∈ ℂ |
30 | | 5cn 11991 |
. . . 4
⊢ 5 ∈
ℂ |
31 | | 7t5e35 12478 |
. . . . 5
⊢ (7
· 5) = ;35 |
32 | 30 | mulid2i 10911 |
. . . . 5
⊢ (1
· 5) = 5 |
33 | 4, 5, 6, 8, 31, 32 | decmul1 12430 |
. . . 4
⊢ (;71 · 5) = ;;355 |
34 | 29, 30, 33 | mulcomli 10915 |
. . 3
⊢ (5
· ;71) = ;;355 |
35 | 28 | nn0cni 12175 |
. . . 4
⊢ ;35 ∈ ℂ |
36 | | eqid 2738 |
. . . . 5
⊢ ;35 = ;35 |
37 | | 5p2e7 12059 |
. . . . 5
⊢ (5 + 2) =
7 |
38 | 2, 4, 1, 36, 37 | decaddi 12426 |
. . . 4
⊢ (;35 + 2) = ;37 |
39 | 35, 14, 38 | addcomli 11097 |
. . 3
⊢ (2 +
;35) = ;37 |
40 | | 5p3e8 12060 |
. . . 4
⊢ (5 + 3) =
8 |
41 | 30, 19, 40 | addcomli 11097 |
. . 3
⊢ (3 + 5) =
8 |
42 | 1, 2, 28, 4, 26, 34, 39, 41 | decadd 12420 |
. 2
⊢ ((;23 · 1) + (5 · ;71)) = ;;378 |
43 | 30 | mulid1i 10910 |
. . 3
⊢ (5
· 1) = 5 |
44 | 4 | dec0h 12388 |
. . 3
⊢ 5 = ;05 |
45 | 43, 44 | eqtri 2766 |
. 2
⊢ (5
· 1) = ;05 |
46 | 10, 2 | deccl 12381 |
. . . 4
⊢ ;;163 ∈ ℕ0 |
47 | 46, 2 | deccl 12381 |
. . 3
⊢ ;;;1633
∈ ℕ0 |
48 | | 0nn0 12178 |
. . 3
⊢ 0 ∈
ℕ0 |
49 | 2, 5 | deccl 12381 |
. . 3
⊢ ;37 ∈
ℕ0 |
50 | | 8nn0 12186 |
. . 3
⊢ 8 ∈
ℕ0 |
51 | | eqid 2738 |
. . 3
⊢ ;;;;16330 = ;;;;16330 |
52 | | eqid 2738 |
. . 3
⊢ ;;378 = ;;378 |
53 | | eqid 2738 |
. . . 4
⊢ ;;;1633 =
;;;1633 |
54 | | eqid 2738 |
. . . 4
⊢ ;37 = ;37 |
55 | | eqid 2738 |
. . . . . 6
⊢ ;;163 = ;;163 |
56 | | 3p3e6 12055 |
. . . . . 6
⊢ (3 + 3) =
6 |
57 | 10, 2, 2, 55, 56 | decaddi 12426 |
. . . . 5
⊢ (;;163 + 3) = ;;166 |
58 | | 6p1e7 12051 |
. . . . 5
⊢ (6 + 1) =
7 |
59 | 10, 9, 6, 57, 58 | decaddi 12426 |
. . . 4
⊢ ((;;163 + 3) + 1) = ;;167 |
60 | | 7p3e10 12441 |
. . . . 5
⊢ (7 + 3) =
;10 |
61 | 13, 19, 60 | addcomli 11097 |
. . . 4
⊢ (3 + 7) =
;10 |
62 | 46, 2, 2, 5, 53, 54, 59, 61 | decaddc2 12422 |
. . 3
⊢ (;;;1633 +
;37) = ;;;1670 |
63 | | 8cn 12000 |
. . . 4
⊢ 8 ∈
ℂ |
64 | 63 | addid2i 11093 |
. . 3
⊢ (0 + 8) =
8 |
65 | 47, 48, 49, 50, 51, 52, 62, 64 | decadd 12420 |
. 2
⊢ (;;;;16330 + ;;378) =
;;;;16708 |
66 | 3, 4, 7, 6, 27, 42, 45, 65, 48, 4 | decpmul 40237 |
1
⊢ (;;235 · ;;711) =
;;;;;167085 |