MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5recm6rec Structured version   Visualization version   GIF version

Theorem 5recm6rec 12581
Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.)
Assertion
Ref Expression
5recm6rec ((1 / 5) − (1 / 6)) = (1 / 30)

Proof of Theorem 5recm6rec
StepHypRef Expression
1 5cn 12061 . . 3 5 ∈ ℂ
2 6cn 12064 . . 3 6 ∈ ℂ
3 5re 12060 . . . 4 5 ∈ ℝ
4 5pos 12082 . . . 4 0 < 5
53, 4gt0ne0ii 11511 . . 3 5 ≠ 0
6 6re 12063 . . . 4 6 ∈ ℝ
7 6pos 12083 . . . 4 0 < 6
86, 7gt0ne0ii 11511 . . 3 6 ≠ 0
91, 2, 5, 8subreci 11805 . 2 ((1 / 5) − (1 / 6)) = ((6 − 5) / (5 · 6))
10 ax-1cn 10929 . . . 4 1 ∈ ℂ
11 5p1e6 12120 . . . 4 (5 + 1) = 6
122, 1, 10, 11subaddrii 11310 . . 3 (6 − 5) = 1
13 6t5e30 12544 . . . 4 (6 · 5) = 30
142, 1, 13mulcomli 10984 . . 3 (5 · 6) = 30
1512, 14oveq12i 7287 . 2 ((6 − 5) / (5 · 6)) = (1 / 30)
169, 15eqtri 2766 1 ((1 / 5) − (1 / 6)) = (1 / 30)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7275  0cc0 10871  1c1 10872   · cmul 10876  cmin 11205   / cdiv 11632  3c3 12029  5c5 12031  6c6 12032  cdc 12437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-dec 12438
This theorem is referenced by:  bpoly4  15769
  Copyright terms: Public domain W3C validator