MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4p1lem1div2 Structured version   Visualization version   GIF version

Theorem fldiv4p1lem1div2 13204
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 11261 . . . 4 1 ≤ 1
21a1i 11 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 fvoveq1 7162 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
4 3lt4 11803 . . . . . . 7 3 < 4
5 3nn0 11907 . . . . . . . 8 3 ∈ ℕ0
6 4nn 11712 . . . . . . . 8 4 ∈ ℕ
7 divfl0 13193 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
85, 6, 7mp2an 691 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
94, 8mpbi 233 . . . . . 6 (⌊‘(3 / 4)) = 0
103, 9eqtrdi 2852 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1110oveq1d 7154 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
12 0p1e1 11751 . . . 4 (0 + 1) = 1
1311, 12eqtrdi 2852 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
14 oveq1 7146 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
15 3m1e2 11757 . . . . . 6 (3 − 1) = 2
1614, 15eqtrdi 2852 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1716oveq1d 7154 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
18 2div2e1 11770 . . . 4 (2 / 2) = 1
1917, 18eqtrdi 2852 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
202, 13, 193brtr4d 5065 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
21 uzp1 12271 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
22 2re 11703 . . . . . . 7 2 ∈ ℝ
2322leidi 11167 . . . . . 6 2 ≤ 2
2423a1i 11 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
25 fvoveq1 7162 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
26 df-5 11695 . . . . . . . . . . . 12 5 = (4 + 1)
2726oveq1i 7149 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
28 4cn 11714 . . . . . . . . . . . 12 4 ∈ ℂ
29 ax-1cn 10588 . . . . . . . . . . . 12 1 ∈ ℂ
30 4ne0 11737 . . . . . . . . . . . 12 4 ≠ 0
3128, 29, 28, 30divdiri 11390 . . . . . . . . . . 11 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3228, 30dividi 11366 . . . . . . . . . . . 12 (4 / 4) = 1
3332oveq1i 7149 . . . . . . . . . . 11 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3427, 31, 333eqtri 2828 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3534fveq2i 6652 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
36 1re 10634 . . . . . . . . . . 11 1 ∈ ℝ
37 0le1 11156 . . . . . . . . . . 11 0 ≤ 1
38 4re 11713 . . . . . . . . . . 11 4 ∈ ℝ
39 4pos 11736 . . . . . . . . . . 11 0 < 4
40 divge0 11502 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4136, 37, 38, 39, 40mp4an 692 . . . . . . . . . 10 0 ≤ (1 / 4)
42 1lt4 11805 . . . . . . . . . . 11 1 < 4
43 recgt1 11529 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4438, 39, 43mp2an 691 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4542, 44mpbi 233 . . . . . . . . . 10 (1 / 4) < 1
46 1z 12004 . . . . . . . . . . 11 1 ∈ ℤ
4738, 30rereccli 11398 . . . . . . . . . . 11 (1 / 4) ∈ ℝ
48 flbi2 13186 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℝ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4946, 47, 48mp2an 691 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5041, 45, 49mpbir2an 710 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5135, 50eqtri 2824 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5225, 51eqtrdi 2852 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5352oveq1d 7154 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
54 1p1e2 11754 . . . . . 6 (1 + 1) = 2
5553, 54eqtrdi 2852 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
56 oveq1 7146 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
57 5m1e4 11759 . . . . . . . 8 (5 − 1) = 4
5856, 57eqtrdi 2852 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
5958oveq1d 7154 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
60 4d2e2 11799 . . . . . 6 (4 / 2) = 2
6159, 60eqtrdi 2852 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6224, 55, 613brtr4d 5065 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
63 eluz2 12241 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
64 zre 11977 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
65 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
6638a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ∈ ℝ)
6730a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ≠ 0)
6865, 66, 67redivcld 11461 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
69 flle 13168 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℝ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7064, 68, 693syl 18 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7170adantr 484 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7268flcld 13167 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7372zred 12079 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℝ)
7436a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → 1 ∈ ℝ)
7573, 68, 743jca 1125 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7664, 75syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7776adantr 484 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
78 leadd1 11101 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
7977, 78syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8071, 79mpbid 235 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
81 div4p1lem1div2 11884 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8264, 81sylan 583 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
83 peano2re 10806 . . . . . . . . . . . . 13 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
8473, 83syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
85 peano2re 10806 . . . . . . . . . . . . 13 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
8668, 85syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
87 peano2rem 10946 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
8887rehalfcld 11876 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
8984, 86, 883jca 1125 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9064, 89syl 17 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9190adantr 484 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
92 letr 10727 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9391, 92syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9480, 82, 93mp2and 698 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
95943adant1 1127 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
9663, 95sylbi 220 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
97 5p1e6 11776 . . . . . 6 (5 + 1) = 6
9897fveq2i 6652 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
9996, 98eleq2s 2911 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10062, 99jaoi 854 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10121, 100syl 17 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10220, 101jaoi 854 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2112  wne 2990   class class class wbr 5033  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  cn 11629  2c2 11684  3c3 11685  4c4 11686  5c5 11687  6c6 11688  0cn0 11889  cz 11973  cuz 12235  cfl 13159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fl 13161
This theorem is referenced by:  gausslemma2dlem0f  25949
  Copyright terms: Public domain W3C validator