MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4p1lem1div2 Structured version   Visualization version   GIF version

Theorem fldiv4p1lem1div2 13857
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 11870 . . . 4 1 ≤ 1
21a1i 11 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 fvoveq1 7433 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
4 3lt4 12419 . . . . . . 7 3 < 4
5 3nn0 12524 . . . . . . . 8 3 ∈ ℕ0
6 4nn 12328 . . . . . . . 8 4 ∈ ℕ
7 divfl0 13846 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
85, 6, 7mp2an 692 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
94, 8mpbi 230 . . . . . 6 (⌊‘(3 / 4)) = 0
103, 9eqtrdi 2787 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1110oveq1d 7425 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
12 0p1e1 12367 . . . 4 (0 + 1) = 1
1311, 12eqtrdi 2787 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
14 oveq1 7417 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
15 3m1e2 12373 . . . . . 6 (3 − 1) = 2
1614, 15eqtrdi 2787 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1716oveq1d 7425 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
18 2div2e1 12386 . . . 4 (2 / 2) = 1
1917, 18eqtrdi 2787 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
202, 13, 193brtr4d 5156 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
21 uzp1 12898 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
22 2re 12319 . . . . . . 7 2 ∈ ℝ
2322leidi 11776 . . . . . 6 2 ≤ 2
2423a1i 11 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
25 fvoveq1 7433 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
26 df-5 12311 . . . . . . . . . . . 12 5 = (4 + 1)
2726oveq1i 7420 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
28 4cn 12330 . . . . . . . . . . . 12 4 ∈ ℂ
29 ax-1cn 11192 . . . . . . . . . . . 12 1 ∈ ℂ
30 4ne0 12353 . . . . . . . . . . . 12 4 ≠ 0
3128, 29, 28, 30divdiri 12003 . . . . . . . . . . 11 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3228, 30dividi 11979 . . . . . . . . . . . 12 (4 / 4) = 1
3332oveq1i 7420 . . . . . . . . . . 11 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3427, 31, 333eqtri 2763 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3534fveq2i 6884 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
36 1re 11240 . . . . . . . . . . 11 1 ∈ ℝ
37 0le1 11765 . . . . . . . . . . 11 0 ≤ 1
38 4re 12329 . . . . . . . . . . 11 4 ∈ ℝ
39 4pos 12352 . . . . . . . . . . 11 0 < 4
40 divge0 12116 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4136, 37, 38, 39, 40mp4an 693 . . . . . . . . . 10 0 ≤ (1 / 4)
42 1lt4 12421 . . . . . . . . . . 11 1 < 4
43 recgt1 12143 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4438, 39, 43mp2an 692 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4542, 44mpbi 230 . . . . . . . . . 10 (1 / 4) < 1
46 1z 12627 . . . . . . . . . . 11 1 ∈ ℤ
4738, 30rereccli 12011 . . . . . . . . . . 11 (1 / 4) ∈ ℝ
48 flbi2 13839 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℝ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4946, 47, 48mp2an 692 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5041, 45, 49mpbir2an 711 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5135, 50eqtri 2759 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5225, 51eqtrdi 2787 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5352oveq1d 7425 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
54 1p1e2 12370 . . . . . 6 (1 + 1) = 2
5553, 54eqtrdi 2787 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
56 oveq1 7417 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
57 5m1e4 12375 . . . . . . . 8 (5 − 1) = 4
5856, 57eqtrdi 2787 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
5958oveq1d 7425 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
60 4d2e2 12415 . . . . . 6 (4 / 2) = 2
6159, 60eqtrdi 2787 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6224, 55, 613brtr4d 5156 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
63 eluz2 12863 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
64 zre 12597 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
65 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
6638a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ∈ ℝ)
6730a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ≠ 0)
6865, 66, 67redivcld 12074 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
69 flle 13821 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℝ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7064, 68, 693syl 18 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7170adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7268flcld 13820 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7372zred 12702 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℝ)
7436a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → 1 ∈ ℝ)
7573, 68, 743jca 1128 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7664, 75syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7776adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
78 leadd1 11710 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
7977, 78syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8071, 79mpbid 232 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
81 div4p1lem1div2 12501 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8264, 81sylan 580 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
83 peano2re 11413 . . . . . . . . . . . . 13 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
8473, 83syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
85 peano2re 11413 . . . . . . . . . . . . 13 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
8668, 85syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
87 peano2rem 11555 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
8887rehalfcld 12493 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
8984, 86, 883jca 1128 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9064, 89syl 17 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9190adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
92 letr 11334 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9391, 92syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9480, 82, 93mp2and 699 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
95943adant1 1130 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
9663, 95sylbi 217 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
97 5p1e6 12392 . . . . . 6 (5 + 1) = 6
9897fveq2i 6884 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
9996, 98eleq2s 2853 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10062, 99jaoi 857 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10121, 100syl 17 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10220, 101jaoi 857 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  3c3 12301  4c4 12302  5c5 12303  6c6 12304  0cn0 12506  cz 12593  cuz 12857  cfl 13812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fl 13814
This theorem is referenced by:  gausslemma2dlem0f  27329
  Copyright terms: Public domain W3C validator