MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4p1lem1div2 Structured version   Visualization version   GIF version

Theorem fldiv4p1lem1div2 13020
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 11069 . . . 4 1 ≤ 1
21a1i 11 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 fvoveq1 6999 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
4 3lt4 11621 . . . . . . 7 3 < 4
5 3nn0 11727 . . . . . . . 8 3 ∈ ℕ0
6 4nn 11524 . . . . . . . 8 4 ∈ ℕ
7 divfl0 13009 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
85, 6, 7mp2an 679 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
94, 8mpbi 222 . . . . . 6 (⌊‘(3 / 4)) = 0
103, 9syl6eq 2831 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1110oveq1d 6991 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
12 0p1e1 11569 . . . 4 (0 + 1) = 1
1311, 12syl6eq 2831 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
14 oveq1 6983 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
15 3m1e2 11575 . . . . . 6 (3 − 1) = 2
1614, 15syl6eq 2831 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1716oveq1d 6991 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
18 2div2e1 11588 . . . 4 (2 / 2) = 1
1917, 18syl6eq 2831 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
202, 13, 193brtr4d 4961 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
21 uzp1 12093 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
22 2re 11514 . . . . . . 7 2 ∈ ℝ
2322leidi 10975 . . . . . 6 2 ≤ 2
2423a1i 11 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
25 fvoveq1 6999 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
26 df-5 11506 . . . . . . . . . . . 12 5 = (4 + 1)
2726oveq1i 6986 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
28 4cn 11526 . . . . . . . . . . . 12 4 ∈ ℂ
29 ax-1cn 10393 . . . . . . . . . . . 12 1 ∈ ℂ
30 4ne0 11555 . . . . . . . . . . . 12 4 ≠ 0
3128, 29, 28, 30divdiri 11198 . . . . . . . . . . 11 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3228, 30dividi 11174 . . . . . . . . . . . 12 (4 / 4) = 1
3332oveq1i 6986 . . . . . . . . . . 11 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3427, 31, 333eqtri 2807 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3534fveq2i 6502 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
36 1re 10439 . . . . . . . . . . 11 1 ∈ ℝ
37 0le1 10964 . . . . . . . . . . 11 0 ≤ 1
38 4re 11525 . . . . . . . . . . 11 4 ∈ ℝ
39 4pos 11554 . . . . . . . . . . 11 0 < 4
40 divge0 11310 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4136, 37, 38, 39, 40mp4an 680 . . . . . . . . . 10 0 ≤ (1 / 4)
42 1lt4 11623 . . . . . . . . . . 11 1 < 4
43 recgt1 11337 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4438, 39, 43mp2an 679 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4542, 44mpbi 222 . . . . . . . . . 10 (1 / 4) < 1
46 1z 11825 . . . . . . . . . . 11 1 ∈ ℤ
4738, 30rereccli 11206 . . . . . . . . . . 11 (1 / 4) ∈ ℝ
48 flbi2 13002 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℝ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4946, 47, 48mp2an 679 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5041, 45, 49mpbir2an 698 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5135, 50eqtri 2803 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5225, 51syl6eq 2831 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5352oveq1d 6991 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
54 1p1e2 11572 . . . . . 6 (1 + 1) = 2
5553, 54syl6eq 2831 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
56 oveq1 6983 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
57 5m1e4 11577 . . . . . . . 8 (5 − 1) = 4
5856, 57syl6eq 2831 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
5958oveq1d 6991 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
60 4d2e2 11617 . . . . . 6 (4 / 2) = 2
6159, 60syl6eq 2831 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6224, 55, 613brtr4d 4961 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
63 eluz2 12064 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
64 zre 11797 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
65 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
6638a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ∈ ℝ)
6730a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ≠ 0)
6865, 66, 67redivcld 11269 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
69 flle 12984 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℝ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7064, 68, 693syl 18 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7170adantr 473 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7268flcld 12983 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7372zred 11900 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℝ)
7436a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → 1 ∈ ℝ)
7573, 68, 743jca 1108 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7664, 75syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7776adantr 473 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
78 leadd1 10909 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
7977, 78syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8071, 79mpbid 224 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
81 div4p1lem1div2 11702 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8264, 81sylan 572 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
83 peano2re 10613 . . . . . . . . . . . . 13 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
8473, 83syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
85 peano2re 10613 . . . . . . . . . . . . 13 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
8668, 85syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
87 peano2rem 10754 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
8887rehalfcld 11694 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
8984, 86, 883jca 1108 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9064, 89syl 17 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9190adantr 473 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
92 letr 10534 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9391, 92syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9480, 82, 93mp2and 686 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
95943adant1 1110 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
9663, 95sylbi 209 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
97 5p1e6 11594 . . . . . 6 (5 + 1) = 6
9897fveq2i 6502 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
9996, 98eleq2s 2885 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10062, 99jaoi 843 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10121, 100syl 17 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10220, 101jaoi 843 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050  wne 2968   class class class wbr 4929  cfv 6188  (class class class)co 6976  cr 10334  0cc0 10335  1c1 10336   + caddc 10338   < clt 10474  cle 10475  cmin 10670   / cdiv 11098  cn 11439  2c2 11495  3c3 11496  4c4 11497  5c5 11498  6c6 11499  0cn0 11707  cz 11793  cuz 12058  cfl 12975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-fl 12977
This theorem is referenced by:  gausslemma2dlem0f  25639
  Copyright terms: Public domain W3C validator