MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4p1lem1div2 Structured version   Visualization version   GIF version

Theorem fldiv4p1lem1div2 13739
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 11745 . . . 4 1 ≤ 1
21a1i 11 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 fvoveq1 7369 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
4 3lt4 12294 . . . . . . 7 3 < 4
5 3nn0 12399 . . . . . . . 8 3 ∈ ℕ0
6 4nn 12208 . . . . . . . 8 4 ∈ ℕ
7 divfl0 13728 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
85, 6, 7mp2an 692 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
94, 8mpbi 230 . . . . . 6 (⌊‘(3 / 4)) = 0
103, 9eqtrdi 2782 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1110oveq1d 7361 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
12 0p1e1 12242 . . . 4 (0 + 1) = 1
1311, 12eqtrdi 2782 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
14 oveq1 7353 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
15 3m1e2 12248 . . . . . 6 (3 − 1) = 2
1614, 15eqtrdi 2782 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1716oveq1d 7361 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
18 2div2e1 12261 . . . 4 (2 / 2) = 1
1917, 18eqtrdi 2782 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
202, 13, 193brtr4d 5121 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
21 uzp1 12773 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
22 2re 12199 . . . . . . 7 2 ∈ ℝ
2322leidi 11651 . . . . . 6 2 ≤ 2
2423a1i 11 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
25 fvoveq1 7369 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
26 df-5 12191 . . . . . . . . . . . 12 5 = (4 + 1)
2726oveq1i 7356 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
28 4cn 12210 . . . . . . . . . . . 12 4 ∈ ℂ
29 ax-1cn 11064 . . . . . . . . . . . 12 1 ∈ ℂ
30 4ne0 12233 . . . . . . . . . . . 12 4 ≠ 0
3128, 29, 28, 30divdiri 11878 . . . . . . . . . . 11 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3228, 30dividi 11854 . . . . . . . . . . . 12 (4 / 4) = 1
3332oveq1i 7356 . . . . . . . . . . 11 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3427, 31, 333eqtri 2758 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3534fveq2i 6825 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
36 1re 11112 . . . . . . . . . . 11 1 ∈ ℝ
37 0le1 11640 . . . . . . . . . . 11 0 ≤ 1
38 4re 12209 . . . . . . . . . . 11 4 ∈ ℝ
39 4pos 12232 . . . . . . . . . . 11 0 < 4
40 divge0 11991 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4136, 37, 38, 39, 40mp4an 693 . . . . . . . . . 10 0 ≤ (1 / 4)
42 1lt4 12296 . . . . . . . . . . 11 1 < 4
43 recgt1 12018 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4438, 39, 43mp2an 692 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4542, 44mpbi 230 . . . . . . . . . 10 (1 / 4) < 1
46 1z 12502 . . . . . . . . . . 11 1 ∈ ℤ
4738, 30rereccli 11886 . . . . . . . . . . 11 (1 / 4) ∈ ℝ
48 flbi2 13721 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℝ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4946, 47, 48mp2an 692 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5041, 45, 49mpbir2an 711 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5135, 50eqtri 2754 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5225, 51eqtrdi 2782 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5352oveq1d 7361 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
54 1p1e2 12245 . . . . . 6 (1 + 1) = 2
5553, 54eqtrdi 2782 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
56 oveq1 7353 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
57 5m1e4 12250 . . . . . . . 8 (5 − 1) = 4
5856, 57eqtrdi 2782 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
5958oveq1d 7361 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
60 4d2e2 12290 . . . . . 6 (4 / 2) = 2
6159, 60eqtrdi 2782 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6224, 55, 613brtr4d 5121 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
63 eluz2 12738 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
64 zre 12472 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
65 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
6638a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ∈ ℝ)
6730a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ≠ 0)
6865, 66, 67redivcld 11949 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
69 flle 13703 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℝ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7064, 68, 693syl 18 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7170adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7268flcld 13702 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7372zred 12577 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℝ)
7436a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → 1 ∈ ℝ)
7573, 68, 743jca 1128 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7664, 75syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7776adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
78 leadd1 11585 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
7977, 78syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8071, 79mpbid 232 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
81 div4p1lem1div2 12376 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8264, 81sylan 580 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
83 peano2re 11286 . . . . . . . . . . . . 13 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
8473, 83syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
85 peano2re 11286 . . . . . . . . . . . . 13 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
8668, 85syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
87 peano2rem 11428 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
8887rehalfcld 12368 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
8984, 86, 883jca 1128 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9064, 89syl 17 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9190adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
92 letr 11207 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9391, 92syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9480, 82, 93mp2and 699 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
95943adant1 1130 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
9663, 95sylbi 217 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
97 5p1e6 12267 . . . . . 6 (5 + 1) = 6
9897fveq2i 6825 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
9996, 98eleq2s 2849 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10062, 99jaoi 857 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10121, 100syl 17 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10220, 101jaoi 857 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  4c4 12182  5c5 12183  6c6 12184  0cn0 12381  cz 12468  cuz 12732  cfl 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fl 13696
This theorem is referenced by:  gausslemma2dlem0f  27299
  Copyright terms: Public domain W3C validator