Proof of Theorem fldiv4p1lem1div2
Step | Hyp | Ref
| Expression |
1 | | 1le1 11533 |
. . . 4
⊢ 1 ≤
1 |
2 | 1 | a1i 11 |
. . 3
⊢ (𝑁 = 3 → 1 ≤
1) |
3 | | fvoveq1 7278 |
. . . . . 6
⊢ (𝑁 = 3 →
(⌊‘(𝑁 / 4)) =
(⌊‘(3 / 4))) |
4 | | 3lt4 12077 |
. . . . . . 7
⊢ 3 <
4 |
5 | | 3nn0 12181 |
. . . . . . . 8
⊢ 3 ∈
ℕ0 |
6 | | 4nn 11986 |
. . . . . . . 8
⊢ 4 ∈
ℕ |
7 | | divfl0 13472 |
. . . . . . . 8
⊢ ((3
∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔
(⌊‘(3 / 4)) = 0)) |
8 | 5, 6, 7 | mp2an 688 |
. . . . . . 7
⊢ (3 < 4
↔ (⌊‘(3 / 4)) = 0) |
9 | 4, 8 | mpbi 229 |
. . . . . 6
⊢
(⌊‘(3 / 4)) = 0 |
10 | 3, 9 | eqtrdi 2795 |
. . . . 5
⊢ (𝑁 = 3 →
(⌊‘(𝑁 / 4)) =
0) |
11 | 10 | oveq1d 7270 |
. . . 4
⊢ (𝑁 = 3 →
((⌊‘(𝑁 / 4)) +
1) = (0 + 1)) |
12 | | 0p1e1 12025 |
. . . 4
⊢ (0 + 1) =
1 |
13 | 11, 12 | eqtrdi 2795 |
. . 3
⊢ (𝑁 = 3 →
((⌊‘(𝑁 / 4)) +
1) = 1) |
14 | | oveq1 7262 |
. . . . . 6
⊢ (𝑁 = 3 → (𝑁 − 1) = (3 −
1)) |
15 | | 3m1e2 12031 |
. . . . . 6
⊢ (3
− 1) = 2 |
16 | 14, 15 | eqtrdi 2795 |
. . . . 5
⊢ (𝑁 = 3 → (𝑁 − 1) = 2) |
17 | 16 | oveq1d 7270 |
. . . 4
⊢ (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2)) |
18 | | 2div2e1 12044 |
. . . 4
⊢ (2 / 2) =
1 |
19 | 17, 18 | eqtrdi 2795 |
. . 3
⊢ (𝑁 = 3 → ((𝑁 − 1) / 2) = 1) |
20 | 2, 13, 19 | 3brtr4d 5102 |
. 2
⊢ (𝑁 = 3 →
((⌊‘(𝑁 / 4)) +
1) ≤ ((𝑁 − 1) /
2)) |
21 | | uzp1 12548 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ≥‘(5 +
1)))) |
22 | | 2re 11977 |
. . . . . . 7
⊢ 2 ∈
ℝ |
23 | 22 | leidi 11439 |
. . . . . 6
⊢ 2 ≤
2 |
24 | 23 | a1i 11 |
. . . . 5
⊢ (𝑁 = 5 → 2 ≤
2) |
25 | | fvoveq1 7278 |
. . . . . . . 8
⊢ (𝑁 = 5 →
(⌊‘(𝑁 / 4)) =
(⌊‘(5 / 4))) |
26 | | df-5 11969 |
. . . . . . . . . . . 12
⊢ 5 = (4 +
1) |
27 | 26 | oveq1i 7265 |
. . . . . . . . . . 11
⊢ (5 / 4) =
((4 + 1) / 4) |
28 | | 4cn 11988 |
. . . . . . . . . . . 12
⊢ 4 ∈
ℂ |
29 | | ax-1cn 10860 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
30 | | 4ne0 12011 |
. . . . . . . . . . . 12
⊢ 4 ≠
0 |
31 | 28, 29, 28, 30 | divdiri 11662 |
. . . . . . . . . . 11
⊢ ((4 + 1)
/ 4) = ((4 / 4) + (1 / 4)) |
32 | 28, 30 | dividi 11638 |
. . . . . . . . . . . 12
⊢ (4 / 4) =
1 |
33 | 32 | oveq1i 7265 |
. . . . . . . . . . 11
⊢ ((4 / 4)
+ (1 / 4)) = (1 + (1 / 4)) |
34 | 27, 31, 33 | 3eqtri 2770 |
. . . . . . . . . 10
⊢ (5 / 4) =
(1 + (1 / 4)) |
35 | 34 | fveq2i 6759 |
. . . . . . . . 9
⊢
(⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4))) |
36 | | 1re 10906 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
37 | | 0le1 11428 |
. . . . . . . . . . 11
⊢ 0 ≤
1 |
38 | | 4re 11987 |
. . . . . . . . . . 11
⊢ 4 ∈
ℝ |
39 | | 4pos 12010 |
. . . . . . . . . . 11
⊢ 0 <
4 |
40 | | divge0 11774 |
. . . . . . . . . . 11
⊢ (((1
∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) →
0 ≤ (1 / 4)) |
41 | 36, 37, 38, 39, 40 | mp4an 689 |
. . . . . . . . . 10
⊢ 0 ≤ (1
/ 4) |
42 | | 1lt4 12079 |
. . . . . . . . . . 11
⊢ 1 <
4 |
43 | | recgt1 11801 |
. . . . . . . . . . . 12
⊢ ((4
∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) <
1)) |
44 | 38, 39, 43 | mp2an 688 |
. . . . . . . . . . 11
⊢ (1 < 4
↔ (1 / 4) < 1) |
45 | 42, 44 | mpbi 229 |
. . . . . . . . . 10
⊢ (1 / 4)
< 1 |
46 | | 1z 12280 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
47 | 38, 30 | rereccli 11670 |
. . . . . . . . . . 11
⊢ (1 / 4)
∈ ℝ |
48 | | flbi2 13465 |
. . . . . . . . . . 11
⊢ ((1
∈ ℤ ∧ (1 / 4) ∈ ℝ) → ((⌊‘(1 + (1 /
4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))) |
49 | 46, 47, 48 | mp2an 688 |
. . . . . . . . . 10
⊢
((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4)
< 1)) |
50 | 41, 45, 49 | mpbir2an 707 |
. . . . . . . . 9
⊢
(⌊‘(1 + (1 / 4))) = 1 |
51 | 35, 50 | eqtri 2766 |
. . . . . . . 8
⊢
(⌊‘(5 / 4)) = 1 |
52 | 25, 51 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑁 = 5 →
(⌊‘(𝑁 / 4)) =
1) |
53 | 52 | oveq1d 7270 |
. . . . . 6
⊢ (𝑁 = 5 →
((⌊‘(𝑁 / 4)) +
1) = (1 + 1)) |
54 | | 1p1e2 12028 |
. . . . . 6
⊢ (1 + 1) =
2 |
55 | 53, 54 | eqtrdi 2795 |
. . . . 5
⊢ (𝑁 = 5 →
((⌊‘(𝑁 / 4)) +
1) = 2) |
56 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑁 = 5 → (𝑁 − 1) = (5 −
1)) |
57 | | 5m1e4 12033 |
. . . . . . . 8
⊢ (5
− 1) = 4 |
58 | 56, 57 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑁 = 5 → (𝑁 − 1) = 4) |
59 | 58 | oveq1d 7270 |
. . . . . 6
⊢ (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2)) |
60 | | 4d2e2 12073 |
. . . . . 6
⊢ (4 / 2) =
2 |
61 | 59, 60 | eqtrdi 2795 |
. . . . 5
⊢ (𝑁 = 5 → ((𝑁 − 1) / 2) = 2) |
62 | 24, 55, 61 | 3brtr4d 5102 |
. . . 4
⊢ (𝑁 = 5 →
((⌊‘(𝑁 / 4)) +
1) ≤ ((𝑁 − 1) /
2)) |
63 | | eluz2 12517 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤
𝑁)) |
64 | | zre 12253 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
65 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → 𝑁 ∈
ℝ) |
66 | 38 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → 4 ∈
ℝ) |
67 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → 4 ≠
0) |
68 | 65, 66, 67 | redivcld 11733 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → (𝑁 / 4) ∈
ℝ) |
69 | | flle 13447 |
. . . . . . . . . . 11
⊢ ((𝑁 / 4) ∈ ℝ →
(⌊‘(𝑁 / 4))
≤ (𝑁 /
4)) |
70 | 64, 68, 69 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
(⌊‘(𝑁 / 4))
≤ (𝑁 /
4)) |
71 | 70 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 6 ≤
𝑁) →
(⌊‘(𝑁 / 4))
≤ (𝑁 /
4)) |
72 | 68 | flcld 13446 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℝ →
(⌊‘(𝑁 / 4))
∈ ℤ) |
73 | 72 | zred 12355 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℝ →
(⌊‘(𝑁 / 4))
∈ ℝ) |
74 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℝ → 1 ∈
ℝ) |
75 | 73, 68, 74 | 3jca 1126 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ →
((⌊‘(𝑁 / 4))
∈ ℝ ∧ (𝑁 /
4) ∈ ℝ ∧ 1 ∈ ℝ)) |
76 | 64, 75 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ →
((⌊‘(𝑁 / 4))
∈ ℝ ∧ (𝑁 /
4) ∈ ℝ ∧ 1 ∈ ℝ)) |
77 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 6 ≤
𝑁) →
((⌊‘(𝑁 / 4))
∈ ℝ ∧ (𝑁 /
4) ∈ ℝ ∧ 1 ∈ ℝ)) |
78 | | leadd1 11373 |
. . . . . . . . . 10
⊢
(((⌊‘(𝑁
/ 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((⌊‘(𝑁 /
4)) ≤ (𝑁 / 4) ↔
((⌊‘(𝑁 / 4)) +
1) ≤ ((𝑁 / 4) +
1))) |
79 | 77, 78 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 6 ≤
𝑁) →
((⌊‘(𝑁 / 4))
≤ (𝑁 / 4) ↔
((⌊‘(𝑁 / 4)) +
1) ≤ ((𝑁 / 4) +
1))) |
80 | 71, 79 | mpbid 231 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 6 ≤
𝑁) →
((⌊‘(𝑁 / 4)) +
1) ≤ ((𝑁 / 4) +
1)) |
81 | | div4p1lem1div2 12158 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 6 ≤
𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) /
2)) |
82 | 64, 81 | sylan 579 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 6 ≤
𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) /
2)) |
83 | | peano2re 11078 |
. . . . . . . . . . . . 13
⊢
((⌊‘(𝑁 /
4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ) |
84 | 73, 83 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ →
((⌊‘(𝑁 / 4)) +
1) ∈ ℝ) |
85 | | peano2re 11078 |
. . . . . . . . . . . . 13
⊢ ((𝑁 / 4) ∈ ℝ →
((𝑁 / 4) + 1) ∈
ℝ) |
86 | 68, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈
ℝ) |
87 | | peano2rem 11218 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) |
88 | 87 | rehalfcld 12150 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈
ℝ) |
89 | 84, 86, 88 | 3jca 1126 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ →
(((⌊‘(𝑁 / 4)) +
1) ∈ ℝ ∧ ((𝑁
/ 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈
ℝ)) |
90 | 64, 89 | syl 17 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
(((⌊‘(𝑁 / 4)) +
1) ∈ ℝ ∧ ((𝑁
/ 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈
ℝ)) |
91 | 90 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 6 ≤
𝑁) →
(((⌊‘(𝑁 / 4)) +
1) ∈ ℝ ∧ ((𝑁
/ 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈
ℝ)) |
92 | | letr 10999 |
. . . . . . . . 9
⊢
((((⌊‘(𝑁
/ 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ)
→ ((((⌊‘(𝑁
/ 4)) + 1) ≤ ((𝑁 / 4) +
1) ∧ ((𝑁 / 4) + 1) ≤
((𝑁 − 1) / 2)) →
((⌊‘(𝑁 / 4)) +
1) ≤ ((𝑁 − 1) /
2))) |
93 | 91, 92 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 6 ≤
𝑁) →
((((⌊‘(𝑁 / 4))
+ 1) ≤ ((𝑁 / 4) + 1)
∧ ((𝑁 / 4) + 1) ≤
((𝑁 − 1) / 2)) →
((⌊‘(𝑁 / 4)) +
1) ≤ ((𝑁 − 1) /
2))) |
94 | 80, 82, 93 | mp2and 695 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 6 ≤
𝑁) →
((⌊‘(𝑁 / 4)) +
1) ≤ ((𝑁 − 1) /
2)) |
95 | 94 | 3adant1 1128 |
. . . . . 6
⊢ ((6
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)) |
96 | 63, 95 | sylbi 216 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)) |
97 | | 5p1e6 12050 |
. . . . . 6
⊢ (5 + 1) =
6 |
98 | 97 | fveq2i 6759 |
. . . . 5
⊢
(ℤ≥‘(5 + 1)) =
(ℤ≥‘6) |
99 | 96, 98 | eleq2s 2857 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) /
2)) |
100 | 62, 99 | jaoi 853 |
. . 3
⊢ ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ≥‘(5 +
1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)) |
101 | 21, 100 | syl 17 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)) |
102 | 20, 101 | jaoi 853 |
1
⊢ ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ≥‘5))
→ ((⌊‘(𝑁 /
4)) + 1) ≤ ((𝑁 −
1) / 2)) |