MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4p1lem1div2 Structured version   Visualization version   GIF version

Theorem fldiv4p1lem1div2 13555
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 11603 . . . 4 1 ≤ 1
21a1i 11 . . 3 (𝑁 = 3 → 1 ≤ 1)
3 fvoveq1 7298 . . . . . 6 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = (⌊‘(3 / 4)))
4 3lt4 12147 . . . . . . 7 3 < 4
5 3nn0 12251 . . . . . . . 8 3 ∈ ℕ0
6 4nn 12056 . . . . . . . 8 4 ∈ ℕ
7 divfl0 13544 . . . . . . . 8 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ) → (3 < 4 ↔ (⌊‘(3 / 4)) = 0))
85, 6, 7mp2an 689 . . . . . . 7 (3 < 4 ↔ (⌊‘(3 / 4)) = 0)
94, 8mpbi 229 . . . . . 6 (⌊‘(3 / 4)) = 0
103, 9eqtrdi 2794 . . . . 5 (𝑁 = 3 → (⌊‘(𝑁 / 4)) = 0)
1110oveq1d 7290 . . . 4 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = (0 + 1))
12 0p1e1 12095 . . . 4 (0 + 1) = 1
1311, 12eqtrdi 2794 . . 3 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) = 1)
14 oveq1 7282 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
15 3m1e2 12101 . . . . . 6 (3 − 1) = 2
1614, 15eqtrdi 2794 . . . . 5 (𝑁 = 3 → (𝑁 − 1) = 2)
1716oveq1d 7290 . . . 4 (𝑁 = 3 → ((𝑁 − 1) / 2) = (2 / 2))
18 2div2e1 12114 . . . 4 (2 / 2) = 1
1917, 18eqtrdi 2794 . . 3 (𝑁 = 3 → ((𝑁 − 1) / 2) = 1)
202, 13, 193brtr4d 5106 . 2 (𝑁 = 3 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
21 uzp1 12619 . . 3 (𝑁 ∈ (ℤ‘5) → (𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))))
22 2re 12047 . . . . . . 7 2 ∈ ℝ
2322leidi 11509 . . . . . 6 2 ≤ 2
2423a1i 11 . . . . 5 (𝑁 = 5 → 2 ≤ 2)
25 fvoveq1 7298 . . . . . . . 8 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = (⌊‘(5 / 4)))
26 df-5 12039 . . . . . . . . . . . 12 5 = (4 + 1)
2726oveq1i 7285 . . . . . . . . . . 11 (5 / 4) = ((4 + 1) / 4)
28 4cn 12058 . . . . . . . . . . . 12 4 ∈ ℂ
29 ax-1cn 10929 . . . . . . . . . . . 12 1 ∈ ℂ
30 4ne0 12081 . . . . . . . . . . . 12 4 ≠ 0
3128, 29, 28, 30divdiri 11732 . . . . . . . . . . 11 ((4 + 1) / 4) = ((4 / 4) + (1 / 4))
3228, 30dividi 11708 . . . . . . . . . . . 12 (4 / 4) = 1
3332oveq1i 7285 . . . . . . . . . . 11 ((4 / 4) + (1 / 4)) = (1 + (1 / 4))
3427, 31, 333eqtri 2770 . . . . . . . . . 10 (5 / 4) = (1 + (1 / 4))
3534fveq2i 6777 . . . . . . . . 9 (⌊‘(5 / 4)) = (⌊‘(1 + (1 / 4)))
36 1re 10975 . . . . . . . . . . 11 1 ∈ ℝ
37 0le1 11498 . . . . . . . . . . 11 0 ≤ 1
38 4re 12057 . . . . . . . . . . 11 4 ∈ ℝ
39 4pos 12080 . . . . . . . . . . 11 0 < 4
40 divge0 11844 . . . . . . . . . . 11 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
4136, 37, 38, 39, 40mp4an 690 . . . . . . . . . 10 0 ≤ (1 / 4)
42 1lt4 12149 . . . . . . . . . . 11 1 < 4
43 recgt1 11871 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
4438, 39, 43mp2an 689 . . . . . . . . . . 11 (1 < 4 ↔ (1 / 4) < 1)
4542, 44mpbi 229 . . . . . . . . . 10 (1 / 4) < 1
46 1z 12350 . . . . . . . . . . 11 1 ∈ ℤ
4738, 30rereccli 11740 . . . . . . . . . . 11 (1 / 4) ∈ ℝ
48 flbi2 13537 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (1 / 4) ∈ ℝ) → ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4946, 47, 48mp2an 689 . . . . . . . . . 10 ((⌊‘(1 + (1 / 4))) = 1 ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1))
5041, 45, 49mpbir2an 708 . . . . . . . . 9 (⌊‘(1 + (1 / 4))) = 1
5135, 50eqtri 2766 . . . . . . . 8 (⌊‘(5 / 4)) = 1
5225, 51eqtrdi 2794 . . . . . . 7 (𝑁 = 5 → (⌊‘(𝑁 / 4)) = 1)
5352oveq1d 7290 . . . . . 6 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = (1 + 1))
54 1p1e2 12098 . . . . . 6 (1 + 1) = 2
5553, 54eqtrdi 2794 . . . . 5 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) = 2)
56 oveq1 7282 . . . . . . . 8 (𝑁 = 5 → (𝑁 − 1) = (5 − 1))
57 5m1e4 12103 . . . . . . . 8 (5 − 1) = 4
5856, 57eqtrdi 2794 . . . . . . 7 (𝑁 = 5 → (𝑁 − 1) = 4)
5958oveq1d 7290 . . . . . 6 (𝑁 = 5 → ((𝑁 − 1) / 2) = (4 / 2))
60 4d2e2 12143 . . . . . 6 (4 / 2) = 2
6159, 60eqtrdi 2794 . . . . 5 (𝑁 = 5 → ((𝑁 − 1) / 2) = 2)
6224, 55, 613brtr4d 5106 . . . 4 (𝑁 = 5 → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
63 eluz2 12588 . . . . . 6 (𝑁 ∈ (ℤ‘6) ↔ (6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁))
64 zre 12323 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
65 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
6638a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ∈ ℝ)
6730a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 4 ≠ 0)
6865, 66, 67redivcld 11803 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
69 flle 13519 . . . . . . . . . . 11 ((𝑁 / 4) ∈ ℝ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7064, 68, 693syl 18 . . . . . . . . . 10 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7170adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
7268flcld 13518 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℤ)
7372zred 12426 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℝ)
7436a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → 1 ∈ ℝ)
7573, 68, 743jca 1127 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7664, 75syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
7776adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ))
78 leadd1 11443 . . . . . . . . . 10 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ 1 ∈ ℝ) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
7977, 78syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1)))
8071, 79mpbid 231 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1))
81 div4p1lem1div2 12228 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
8264, 81sylan 580 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
83 peano2re 11148 . . . . . . . . . . . . 13 ((⌊‘(𝑁 / 4)) ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
8473, 83syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) + 1) ∈ ℝ)
85 peano2re 11148 . . . . . . . . . . . . 13 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
8668, 85syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
87 peano2rem 11288 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
8887rehalfcld 12220 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
8984, 86, 883jca 1127 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9064, 89syl 17 . . . . . . . . . 10 (𝑁 ∈ ℤ → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
9190adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → (((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
92 letr 11069 . . . . . . . . 9 ((((⌊‘(𝑁 / 4)) + 1) ∈ ℝ ∧ ((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9391, 92syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 / 4) + 1) ∧ ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2)))
9480, 82, 93mp2and 696 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
95943adant1 1129 . . . . . 6 ((6 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 6 ≤ 𝑁) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
9663, 95sylbi 216 . . . . 5 (𝑁 ∈ (ℤ‘6) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
97 5p1e6 12120 . . . . . 6 (5 + 1) = 6
9897fveq2i 6777 . . . . 5 (ℤ‘(5 + 1)) = (ℤ‘6)
9996, 98eleq2s 2857 . . . 4 (𝑁 ∈ (ℤ‘(5 + 1)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10062, 99jaoi 854 . . 3 ((𝑁 = 5 ∨ 𝑁 ∈ (ℤ‘(5 + 1))) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10121, 100syl 17 . 2 (𝑁 ∈ (ℤ‘5) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
10220, 101jaoi 854 1 ((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  5c5 12031  6c6 12032  0cn0 12233  cz 12319  cuz 12582  cfl 13510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512
This theorem is referenced by:  gausslemma2dlem0f  26509
  Copyright terms: Public domain W3C validator