Proof of Theorem 1259lem1
Step | Hyp | Ref
| Expression |
1 | | 1259prm.1 |
. . 3
⊢ 𝑁 = ;;;1259 |
2 | | 1nn0 12179 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
3 | | 2nn0 12180 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
4 | 2, 3 | deccl 12381 |
. . . . 5
⊢ ;12 ∈
ℕ0 |
5 | | 5nn0 12183 |
. . . . 5
⊢ 5 ∈
ℕ0 |
6 | 4, 5 | deccl 12381 |
. . . 4
⊢ ;;125 ∈ ℕ0 |
7 | | 9nn 12001 |
. . . 4
⊢ 9 ∈
ℕ |
8 | 6, 7 | decnncl 12386 |
. . 3
⊢ ;;;1259
∈ ℕ |
9 | 1, 8 | eqeltri 2835 |
. 2
⊢ 𝑁 ∈ ℕ |
10 | | 2nn 11976 |
. 2
⊢ 2 ∈
ℕ |
11 | | 6nn0 12184 |
. . 3
⊢ 6 ∈
ℕ0 |
12 | 2, 11 | deccl 12381 |
. 2
⊢ ;16 ∈
ℕ0 |
13 | | 0z 12260 |
. 2
⊢ 0 ∈
ℤ |
14 | | 8nn0 12186 |
. . 3
⊢ 8 ∈
ℕ0 |
15 | 11, 14 | deccl 12381 |
. 2
⊢ ;68 ∈
ℕ0 |
16 | | 3nn0 12181 |
. . . 4
⊢ 3 ∈
ℕ0 |
17 | 2, 16 | deccl 12381 |
. . 3
⊢ ;13 ∈
ℕ0 |
18 | 17, 11 | deccl 12381 |
. 2
⊢ ;;136 ∈ ℕ0 |
19 | 5, 3 | deccl 12381 |
. . . 4
⊢ ;52 ∈
ℕ0 |
20 | 19 | nn0zi 12275 |
. . 3
⊢ ;52 ∈ ℤ |
21 | 3, 14 | nn0expcli 13737 |
. . 3
⊢
(2↑8) ∈ ℕ0 |
22 | | eqid 2738 |
. . 3
⊢
((2↑8) mod 𝑁) =
((2↑8) mod 𝑁) |
23 | 14 | nn0cni 12175 |
. . . 4
⊢ 8 ∈
ℂ |
24 | | 2cn 11978 |
. . . 4
⊢ 2 ∈
ℂ |
25 | | 8t2e16 12481 |
. . . 4
⊢ (8
· 2) = ;16 |
26 | 23, 24, 25 | mulcomli 10915 |
. . 3
⊢ (2
· 8) = ;16 |
27 | | 9nn0 12187 |
. . . . 5
⊢ 9 ∈
ℕ0 |
28 | | eqid 2738 |
. . . . 5
⊢ ;68 = ;68 |
29 | | 4nn0 12182 |
. . . . . 6
⊢ 4 ∈
ℕ0 |
30 | | 7nn0 12185 |
. . . . . 6
⊢ 7 ∈
ℕ0 |
31 | 29, 30 | deccl 12381 |
. . . . 5
⊢ ;47 ∈
ℕ0 |
32 | | eqid 2738 |
. . . . . 6
⊢ ;;125 = ;;125 |
33 | | 0nn0 12178 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
34 | 11 | dec0h 12388 |
. . . . . . 7
⊢ 6 = ;06 |
35 | | eqid 2738 |
. . . . . . 7
⊢ ;47 = ;47 |
36 | | 4cn 11988 |
. . . . . . . . . 10
⊢ 4 ∈
ℂ |
37 | 36 | addid2i 11093 |
. . . . . . . . 9
⊢ (0 + 4) =
4 |
38 | 37 | oveq1i 7265 |
. . . . . . . 8
⊢ ((0 + 4)
+ 1) = (4 + 1) |
39 | | 4p1e5 12049 |
. . . . . . . 8
⊢ (4 + 1) =
5 |
40 | 38, 39 | eqtri 2766 |
. . . . . . 7
⊢ ((0 + 4)
+ 1) = 5 |
41 | | 7cn 11997 |
. . . . . . . 8
⊢ 7 ∈
ℂ |
42 | | 6cn 11994 |
. . . . . . . 8
⊢ 6 ∈
ℂ |
43 | | 7p6e13 12444 |
. . . . . . . 8
⊢ (7 + 6) =
;13 |
44 | 41, 42, 43 | addcomli 11097 |
. . . . . . 7
⊢ (6 + 7) =
;13 |
45 | 33, 11, 29, 30, 34, 35, 40, 16, 44 | decaddc 12421 |
. . . . . 6
⊢ (6 +
;47) = ;53 |
46 | 3, 11 | deccl 12381 |
. . . . . 6
⊢ ;26 ∈
ℕ0 |
47 | | eqid 2738 |
. . . . . . 7
⊢ ;12 = ;12 |
48 | 5 | dec0h 12388 |
. . . . . . . 8
⊢ 5 = ;05 |
49 | | eqid 2738 |
. . . . . . . 8
⊢ ;26 = ;26 |
50 | 24 | addid2i 11093 |
. . . . . . . . . 10
⊢ (0 + 2) =
2 |
51 | 50 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((0 + 2)
+ 1) = (2 + 1) |
52 | | 2p1e3 12045 |
. . . . . . . . 9
⊢ (2 + 1) =
3 |
53 | 51, 52 | eqtri 2766 |
. . . . . . . 8
⊢ ((0 + 2)
+ 1) = 3 |
54 | | 5cn 11991 |
. . . . . . . . 9
⊢ 5 ∈
ℂ |
55 | | 6p5e11 12439 |
. . . . . . . . 9
⊢ (6 + 5) =
;11 |
56 | 42, 54, 55 | addcomli 11097 |
. . . . . . . 8
⊢ (5 + 6) =
;11 |
57 | 33, 5, 3, 11, 48, 49, 53, 2, 56 | decaddc 12421 |
. . . . . . 7
⊢ (5 +
;26) = ;31 |
58 | | 10nn0 12384 |
. . . . . . 7
⊢ ;10 ∈
ℕ0 |
59 | | eqid 2738 |
. . . . . . . 8
⊢ ;52 = ;52 |
60 | 58 | nn0cni 12175 |
. . . . . . . . 9
⊢ ;10 ∈ ℂ |
61 | | 3cn 11984 |
. . . . . . . . 9
⊢ 3 ∈
ℂ |
62 | | dec10p 12409 |
. . . . . . . . 9
⊢ (;10 + 3) = ;13 |
63 | 60, 61, 62 | addcomli 11097 |
. . . . . . . 8
⊢ (3 +
;10) = ;13 |
64 | 54 | mulid1i 10910 |
. . . . . . . . . 10
⊢ (5
· 1) = 5 |
65 | | 1p0e1 12027 |
. . . . . . . . . 10
⊢ (1 + 0) =
1 |
66 | 64, 65 | oveq12i 7267 |
. . . . . . . . 9
⊢ ((5
· 1) + (1 + 0)) = (5 + 1) |
67 | | 5p1e6 12050 |
. . . . . . . . 9
⊢ (5 + 1) =
6 |
68 | 66, 67 | eqtri 2766 |
. . . . . . . 8
⊢ ((5
· 1) + (1 + 0)) = 6 |
69 | 24 | mulid1i 10910 |
. . . . . . . . . 10
⊢ (2
· 1) = 2 |
70 | 69 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((2
· 1) + 3) = (2 + 3) |
71 | | 3p2e5 12054 |
. . . . . . . . . 10
⊢ (3 + 2) =
5 |
72 | 61, 24, 71 | addcomli 11097 |
. . . . . . . . 9
⊢ (2 + 3) =
5 |
73 | 70, 72, 48 | 3eqtri 2770 |
. . . . . . . 8
⊢ ((2
· 1) + 3) = ;05 |
74 | 5, 3, 2, 16, 59, 63, 2, 5, 33, 68, 73 | decmac 12418 |
. . . . . . 7
⊢ ((;52 · 1) + (3 + ;10)) = ;65 |
75 | 2 | dec0h 12388 |
. . . . . . . 8
⊢ 1 = ;01 |
76 | | 5t2e10 12466 |
. . . . . . . . . 10
⊢ (5
· 2) = ;10 |
77 | | 00id 11080 |
. . . . . . . . . 10
⊢ (0 + 0) =
0 |
78 | 76, 77 | oveq12i 7267 |
. . . . . . . . 9
⊢ ((5
· 2) + (0 + 0)) = (;10 +
0) |
79 | | dec10p 12409 |
. . . . . . . . 9
⊢ (;10 + 0) = ;10 |
80 | 78, 79 | eqtri 2766 |
. . . . . . . 8
⊢ ((5
· 2) + (0 + 0)) = ;10 |
81 | | 2t2e4 12067 |
. . . . . . . . . 10
⊢ (2
· 2) = 4 |
82 | 81 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((2
· 2) + 1) = (4 + 1) |
83 | 82, 39, 48 | 3eqtri 2770 |
. . . . . . . 8
⊢ ((2
· 2) + 1) = ;05 |
84 | 5, 3, 33, 2, 59, 75, 3, 5, 33, 80, 83 | decmac 12418 |
. . . . . . 7
⊢ ((;52 · 2) + 1) = ;;105 |
85 | 2, 3, 16, 2, 47, 57, 19, 5, 58, 74, 84 | decma2c 12419 |
. . . . . 6
⊢ ((;52 · ;12) + (5 + ;26)) = ;;655 |
86 | | 5t5e25 12469 |
. . . . . . . 8
⊢ (5
· 5) = ;25 |
87 | 3, 5, 67, 86 | decsuc 12397 |
. . . . . . 7
⊢ ((5
· 5) + 1) = ;26 |
88 | 54, 24, 76 | mulcomli 10915 |
. . . . . . . 8
⊢ (2
· 5) = ;10 |
89 | 61 | addid2i 11093 |
. . . . . . . 8
⊢ (0 + 3) =
3 |
90 | 2, 33, 16, 88, 89 | decaddi 12426 |
. . . . . . 7
⊢ ((2
· 5) + 3) = ;13 |
91 | 5, 3, 16, 59, 5, 16, 2, 87, 90 | decrmac 12424 |
. . . . . 6
⊢ ((;52 · 5) + 3) = ;;263 |
92 | 4, 5, 5, 16, 32, 45, 19, 16, 46, 85, 91 | decma2c 12419 |
. . . . 5
⊢ ((;52 · ;;125) +
(6 + ;47)) = ;;;6553 |
93 | | 9cn 12003 |
. . . . . . . 8
⊢ 9 ∈
ℂ |
94 | | 9t5e45 12491 |
. . . . . . . 8
⊢ (9
· 5) = ;45 |
95 | 93, 54, 94 | mulcomli 10915 |
. . . . . . 7
⊢ (5
· 9) = ;45 |
96 | | 5p2e7 12059 |
. . . . . . 7
⊢ (5 + 2) =
7 |
97 | 29, 5, 3, 95, 96 | decaddi 12426 |
. . . . . 6
⊢ ((5
· 9) + 2) = ;47 |
98 | | 9t2e18 12488 |
. . . . . . . 8
⊢ (9
· 2) = ;18 |
99 | 93, 24, 98 | mulcomli 10915 |
. . . . . . 7
⊢ (2
· 9) = ;18 |
100 | | 1p1e2 12028 |
. . . . . . 7
⊢ (1 + 1) =
2 |
101 | | 8p8e16 12452 |
. . . . . . 7
⊢ (8 + 8) =
;16 |
102 | 2, 14, 14, 99, 100, 11, 101 | decaddci 12427 |
. . . . . 6
⊢ ((2
· 9) + 8) = ;26 |
103 | 5, 3, 14, 59, 27, 11, 3, 97, 102 | decrmac 12424 |
. . . . 5
⊢ ((;52 · 9) + 8) = ;;476 |
104 | 6, 27, 11, 14, 1, 28, 19, 11, 31, 92, 103 | decma2c 12419 |
. . . 4
⊢ ((;52 · 𝑁) + ;68) = ;;;;65536 |
105 | | 2exp16 16720 |
. . . 4
⊢
(2↑;16) = ;;;;65536 |
106 | | eqid 2738 |
. . . . 5
⊢
(2↑8) = (2↑8) |
107 | | eqid 2738 |
. . . . 5
⊢
((2↑8) · (2↑8)) = ((2↑8) ·
(2↑8)) |
108 | 3, 14, 26, 106, 107 | numexp2x 16708 |
. . . 4
⊢
(2↑;16) = ((2↑8)
· (2↑8)) |
109 | 104, 105,
108 | 3eqtr2i 2772 |
. . 3
⊢ ((;52 · 𝑁) + ;68) = ((2↑8) ·
(2↑8)) |
110 | 9, 10, 14, 20, 21, 15, 22, 26, 109 | mod2xi 16698 |
. 2
⊢
((2↑;16) mod 𝑁) = (;68 mod 𝑁) |
111 | | 6p1e7 12051 |
. . 3
⊢ (6 + 1) =
7 |
112 | | eqid 2738 |
. . 3
⊢ ;16 = ;16 |
113 | 2, 11, 111, 112 | decsuc 12397 |
. 2
⊢ (;16 + 1) = ;17 |
114 | 18 | nn0cni 12175 |
. . . 4
⊢ ;;136 ∈ ℂ |
115 | 114 | addid2i 11093 |
. . 3
⊢ (0 +
;;136) = ;;136 |
116 | 9 | nncni 11913 |
. . . . 5
⊢ 𝑁 ∈ ℂ |
117 | 116 | mul02i 11094 |
. . . 4
⊢ (0
· 𝑁) =
0 |
118 | 117 | oveq1i 7265 |
. . 3
⊢ ((0
· 𝑁) + ;;136) = (0 + ;;136) |
119 | | 6t2e12 12470 |
. . . . 5
⊢ (6
· 2) = ;12 |
120 | 2, 3, 52, 119 | decsuc 12397 |
. . . 4
⊢ ((6
· 2) + 1) = ;13 |
121 | 3, 11, 14, 28, 11, 2, 120, 25 | decmul1c 12431 |
. . 3
⊢ (;68 · 2) = ;;136 |
122 | 115, 118,
121 | 3eqtr4i 2776 |
. 2
⊢ ((0
· 𝑁) + ;;136) = (;68 · 2) |
123 | 9, 10, 12, 13, 15, 18, 110, 113, 122 | modxp1i 16699 |
1
⊢
((2↑;17) mod 𝑁) = (;;136
mod 𝑁) |