![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fmtno5 46225. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem2 | ⊢ (;;;;65536 · 5) = ;;;;;327680 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 12492 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 6nn0 12493 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
3 | 2, 1 | deccl 12692 | . . . 4 ⊢ ;65 ∈ ℕ0 |
4 | 3, 1 | deccl 12692 | . . 3 ⊢ ;;655 ∈ ℕ0 |
5 | 3nn0 12490 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 4, 5 | deccl 12692 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2733 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 0nn0 12487 | . 2 ⊢ 0 ∈ ℕ0 | |
9 | 2nn0 12489 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
10 | 5, 9 | deccl 12692 | . . . . 5 ⊢ ;32 ∈ ℕ0 |
11 | 7nn0 12494 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
12 | 10, 11 | deccl 12692 | . . . 4 ⊢ ;;327 ∈ ℕ0 |
13 | 12, 2 | deccl 12692 | . . 3 ⊢ ;;;3276 ∈ ℕ0 |
14 | eqid 2733 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
15 | 1nn0 12488 | . . . 4 ⊢ 1 ∈ ℕ0 | |
16 | 5p1e6 12359 | . . . . 5 ⊢ (5 + 1) = 6 | |
17 | eqid 2733 | . . . . . 6 ⊢ ;;655 = ;;655 | |
18 | eqid 2733 | . . . . . . . 8 ⊢ ;65 = ;65 | |
19 | 6t5e30 12784 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
20 | 2cn 12287 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
21 | 20 | addlidi 11402 | . . . . . . . . 9 ⊢ (0 + 2) = 2 |
22 | 5, 8, 9, 19, 21 | decaddi 12737 | . . . . . . . 8 ⊢ ((6 · 5) + 2) = ;32 |
23 | 5t5e25 12780 | . . . . . . . 8 ⊢ (5 · 5) = ;25 | |
24 | 1, 2, 1, 18, 1, 9, 22, 23 | decmul1c 12742 | . . . . . . 7 ⊢ (;65 · 5) = ;;325 |
25 | 5p2e7 12368 | . . . . . . 7 ⊢ (5 + 2) = 7 | |
26 | 10, 1, 9, 24, 25 | decaddi 12737 | . . . . . 6 ⊢ ((;65 · 5) + 2) = ;;327 |
27 | 1, 3, 1, 17, 1, 9, 26, 23 | decmul1c 12742 | . . . . 5 ⊢ (;;655 · 5) = ;;;3275 |
28 | 12, 1, 16, 27 | decsuc 12708 | . . . 4 ⊢ ((;;655 · 5) + 1) = ;;;3276 |
29 | 5cn 12300 | . . . . 5 ⊢ 5 ∈ ℂ | |
30 | 3cn 12293 | . . . . 5 ⊢ 3 ∈ ℂ | |
31 | 5t3e15 12778 | . . . . 5 ⊢ (5 · 3) = ;15 | |
32 | 29, 30, 31 | mulcomli 11223 | . . . 4 ⊢ (3 · 5) = ;15 |
33 | 1, 4, 5, 14, 1, 15, 28, 32 | decmul1c 12742 | . . 3 ⊢ (;;;6553 · 5) = ;;;;32765 |
34 | 5p3e8 12369 | . . 3 ⊢ (5 + 3) = 8 | |
35 | 13, 1, 5, 33, 34 | decaddi 12737 | . 2 ⊢ ((;;;6553 · 5) + 3) = ;;;;32768 |
36 | 1, 6, 2, 7, 8, 5, 35, 19 | decmul1c 12742 | 1 ⊢ (;;;;65536 · 5) = ;;;;;327680 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7409 0cc0 11110 1c1 11111 · cmul 11115 2c2 12267 3c3 12268 5c5 12270 6c6 12271 7c7 12272 8c8 12273 ;cdc 12677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-dec 12678 |
This theorem is referenced by: fmtno5lem4 46224 |
Copyright terms: Public domain | W3C validator |