| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fmtno5 47719. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem2 | ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 12412 | . 2 ⊢ 5 ∈ ℕ0 | |
| 2 | 6nn0 12413 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 2, 1 | deccl 12613 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 4 | 3, 1 | deccl 12613 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 5 | 3nn0 12410 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12613 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2733 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 0nn0 12407 | . 2 ⊢ 0 ∈ ℕ0 | |
| 9 | 2nn0 12409 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 10 | 5, 9 | deccl 12613 | . . . . 5 ⊢ ;32 ∈ ℕ0 |
| 11 | 7nn0 12414 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 12 | 10, 11 | deccl 12613 | . . . 4 ⊢ ;;327 ∈ ℕ0 |
| 13 | 12, 2 | deccl 12613 | . . 3 ⊢ ;;;3276 ∈ ℕ0 |
| 14 | eqid 2733 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 15 | 1nn0 12408 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 16 | 5p1e6 12278 | . . . . 5 ⊢ (5 + 1) = 6 | |
| 17 | eqid 2733 | . . . . . 6 ⊢ ;;655 = ;;655 | |
| 18 | eqid 2733 | . . . . . . . 8 ⊢ ;65 = ;65 | |
| 19 | 6t5e30 12705 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
| 20 | 2cn 12211 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 21 | 20 | addlidi 11312 | . . . . . . . . 9 ⊢ (0 + 2) = 2 |
| 22 | 5, 8, 9, 19, 21 | decaddi 12658 | . . . . . . . 8 ⊢ ((6 · 5) + 2) = ;32 |
| 23 | 5t5e25 12701 | . . . . . . . 8 ⊢ (5 · 5) = ;25 | |
| 24 | 1, 2, 1, 18, 1, 9, 22, 23 | decmul1c 12663 | . . . . . . 7 ⊢ (;65 · 5) = ;;325 |
| 25 | 5p2e7 12287 | . . . . . . 7 ⊢ (5 + 2) = 7 | |
| 26 | 10, 1, 9, 24, 25 | decaddi 12658 | . . . . . 6 ⊢ ((;65 · 5) + 2) = ;;327 |
| 27 | 1, 3, 1, 17, 1, 9, 26, 23 | decmul1c 12663 | . . . . 5 ⊢ (;;655 · 5) = ;;;3275 |
| 28 | 12, 1, 16, 27 | decsuc 12629 | . . . 4 ⊢ ((;;655 · 5) + 1) = ;;;3276 |
| 29 | 5cn 12224 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 30 | 3cn 12217 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 31 | 5t3e15 12699 | . . . . 5 ⊢ (5 · 3) = ;15 | |
| 32 | 29, 30, 31 | mulcomli 11132 | . . . 4 ⊢ (3 · 5) = ;15 |
| 33 | 1, 4, 5, 14, 1, 15, 28, 32 | decmul1c 12663 | . . 3 ⊢ (;;;6553 · 5) = ;;;;32765 |
| 34 | 5p3e8 12288 | . . 3 ⊢ (5 + 3) = 8 | |
| 35 | 13, 1, 5, 33, 34 | decaddi 12658 | . 2 ⊢ ((;;;6553 · 5) + 3) = ;;;;32768 |
| 36 | 1, 6, 2, 7, 8, 5, 35, 19 | decmul1c 12663 | 1 ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7355 0cc0 11017 1c1 11018 · cmul 11022 2c2 12191 3c3 12192 5c5 12194 6c6 12195 7c7 12196 8c8 12197 ;cdc 12598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-dec 12599 |
| This theorem is referenced by: fmtno5lem4 47718 |
| Copyright terms: Public domain | W3C validator |