| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fmtno5 47545. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem2 | ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 12422 | . 2 ⊢ 5 ∈ ℕ0 | |
| 2 | 6nn0 12423 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 2, 1 | deccl 12624 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 4 | 3, 1 | deccl 12624 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 5 | 3nn0 12420 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12624 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2729 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 0nn0 12417 | . 2 ⊢ 0 ∈ ℕ0 | |
| 9 | 2nn0 12419 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 10 | 5, 9 | deccl 12624 | . . . . 5 ⊢ ;32 ∈ ℕ0 |
| 11 | 7nn0 12424 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 12 | 10, 11 | deccl 12624 | . . . 4 ⊢ ;;327 ∈ ℕ0 |
| 13 | 12, 2 | deccl 12624 | . . 3 ⊢ ;;;3276 ∈ ℕ0 |
| 14 | eqid 2729 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 15 | 1nn0 12418 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 16 | 5p1e6 12288 | . . . . 5 ⊢ (5 + 1) = 6 | |
| 17 | eqid 2729 | . . . . . 6 ⊢ ;;655 = ;;655 | |
| 18 | eqid 2729 | . . . . . . . 8 ⊢ ;65 = ;65 | |
| 19 | 6t5e30 12716 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
| 20 | 2cn 12221 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 21 | 20 | addlidi 11322 | . . . . . . . . 9 ⊢ (0 + 2) = 2 |
| 22 | 5, 8, 9, 19, 21 | decaddi 12669 | . . . . . . . 8 ⊢ ((6 · 5) + 2) = ;32 |
| 23 | 5t5e25 12712 | . . . . . . . 8 ⊢ (5 · 5) = ;25 | |
| 24 | 1, 2, 1, 18, 1, 9, 22, 23 | decmul1c 12674 | . . . . . . 7 ⊢ (;65 · 5) = ;;325 |
| 25 | 5p2e7 12297 | . . . . . . 7 ⊢ (5 + 2) = 7 | |
| 26 | 10, 1, 9, 24, 25 | decaddi 12669 | . . . . . 6 ⊢ ((;65 · 5) + 2) = ;;327 |
| 27 | 1, 3, 1, 17, 1, 9, 26, 23 | decmul1c 12674 | . . . . 5 ⊢ (;;655 · 5) = ;;;3275 |
| 28 | 12, 1, 16, 27 | decsuc 12640 | . . . 4 ⊢ ((;;655 · 5) + 1) = ;;;3276 |
| 29 | 5cn 12234 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 30 | 3cn 12227 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 31 | 5t3e15 12710 | . . . . 5 ⊢ (5 · 3) = ;15 | |
| 32 | 29, 30, 31 | mulcomli 11143 | . . . 4 ⊢ (3 · 5) = ;15 |
| 33 | 1, 4, 5, 14, 1, 15, 28, 32 | decmul1c 12674 | . . 3 ⊢ (;;;6553 · 5) = ;;;;32765 |
| 34 | 5p3e8 12298 | . . 3 ⊢ (5 + 3) = 8 | |
| 35 | 13, 1, 5, 33, 34 | decaddi 12669 | . 2 ⊢ ((;;;6553 · 5) + 3) = ;;;;32768 |
| 36 | 1, 6, 2, 7, 8, 5, 35, 19 | decmul1c 12674 | 1 ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7353 0cc0 11028 1c1 11029 · cmul 11033 2c2 12201 3c3 12202 5c5 12204 6c6 12205 7c7 12206 8c8 12207 ;cdc 12609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-dec 12610 |
| This theorem is referenced by: fmtno5lem4 47544 |
| Copyright terms: Public domain | W3C validator |