| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fmtno5 47544. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem2 | ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 12546 | . 2 ⊢ 5 ∈ ℕ0 | |
| 2 | 6nn0 12547 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 2, 1 | deccl 12748 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 4 | 3, 1 | deccl 12748 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 5 | 3nn0 12544 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12748 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2737 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 0nn0 12541 | . 2 ⊢ 0 ∈ ℕ0 | |
| 9 | 2nn0 12543 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 10 | 5, 9 | deccl 12748 | . . . . 5 ⊢ ;32 ∈ ℕ0 |
| 11 | 7nn0 12548 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 12 | 10, 11 | deccl 12748 | . . . 4 ⊢ ;;327 ∈ ℕ0 |
| 13 | 12, 2 | deccl 12748 | . . 3 ⊢ ;;;3276 ∈ ℕ0 |
| 14 | eqid 2737 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 15 | 1nn0 12542 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 16 | 5p1e6 12413 | . . . . 5 ⊢ (5 + 1) = 6 | |
| 17 | eqid 2737 | . . . . . 6 ⊢ ;;655 = ;;655 | |
| 18 | eqid 2737 | . . . . . . . 8 ⊢ ;65 = ;65 | |
| 19 | 6t5e30 12840 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
| 20 | 2cn 12341 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 21 | 20 | addlidi 11449 | . . . . . . . . 9 ⊢ (0 + 2) = 2 |
| 22 | 5, 8, 9, 19, 21 | decaddi 12793 | . . . . . . . 8 ⊢ ((6 · 5) + 2) = ;32 |
| 23 | 5t5e25 12836 | . . . . . . . 8 ⊢ (5 · 5) = ;25 | |
| 24 | 1, 2, 1, 18, 1, 9, 22, 23 | decmul1c 12798 | . . . . . . 7 ⊢ (;65 · 5) = ;;325 |
| 25 | 5p2e7 12422 | . . . . . . 7 ⊢ (5 + 2) = 7 | |
| 26 | 10, 1, 9, 24, 25 | decaddi 12793 | . . . . . 6 ⊢ ((;65 · 5) + 2) = ;;327 |
| 27 | 1, 3, 1, 17, 1, 9, 26, 23 | decmul1c 12798 | . . . . 5 ⊢ (;;655 · 5) = ;;;3275 |
| 28 | 12, 1, 16, 27 | decsuc 12764 | . . . 4 ⊢ ((;;655 · 5) + 1) = ;;;3276 |
| 29 | 5cn 12354 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 30 | 3cn 12347 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 31 | 5t3e15 12834 | . . . . 5 ⊢ (5 · 3) = ;15 | |
| 32 | 29, 30, 31 | mulcomli 11270 | . . . 4 ⊢ (3 · 5) = ;15 |
| 33 | 1, 4, 5, 14, 1, 15, 28, 32 | decmul1c 12798 | . . 3 ⊢ (;;;6553 · 5) = ;;;;32765 |
| 34 | 5p3e8 12423 | . . 3 ⊢ (5 + 3) = 8 | |
| 35 | 13, 1, 5, 33, 34 | decaddi 12793 | . 2 ⊢ ((;;;6553 · 5) + 3) = ;;;;32768 |
| 36 | 1, 6, 2, 7, 8, 5, 35, 19 | decmul1c 12798 | 1 ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7431 0cc0 11155 1c1 11156 · cmul 11160 2c2 12321 3c3 12322 5c5 12324 6c6 12325 7c7 12326 8c8 12327 ;cdc 12733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sub 11494 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-dec 12734 |
| This theorem is referenced by: fmtno5lem4 47543 |
| Copyright terms: Public domain | W3C validator |