![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fmtno5 47431. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem2 | ⊢ (;;;;65536 · 5) = ;;;;;327680 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 12573 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 6nn0 12574 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
3 | 2, 1 | deccl 12773 | . . . 4 ⊢ ;65 ∈ ℕ0 |
4 | 3, 1 | deccl 12773 | . . 3 ⊢ ;;655 ∈ ℕ0 |
5 | 3nn0 12571 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 4, 5 | deccl 12773 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2740 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 0nn0 12568 | . 2 ⊢ 0 ∈ ℕ0 | |
9 | 2nn0 12570 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
10 | 5, 9 | deccl 12773 | . . . . 5 ⊢ ;32 ∈ ℕ0 |
11 | 7nn0 12575 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
12 | 10, 11 | deccl 12773 | . . . 4 ⊢ ;;327 ∈ ℕ0 |
13 | 12, 2 | deccl 12773 | . . 3 ⊢ ;;;3276 ∈ ℕ0 |
14 | eqid 2740 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
15 | 1nn0 12569 | . . . 4 ⊢ 1 ∈ ℕ0 | |
16 | 5p1e6 12440 | . . . . 5 ⊢ (5 + 1) = 6 | |
17 | eqid 2740 | . . . . . 6 ⊢ ;;655 = ;;655 | |
18 | eqid 2740 | . . . . . . . 8 ⊢ ;65 = ;65 | |
19 | 6t5e30 12865 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
20 | 2cn 12368 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
21 | 20 | addlidi 11478 | . . . . . . . . 9 ⊢ (0 + 2) = 2 |
22 | 5, 8, 9, 19, 21 | decaddi 12818 | . . . . . . . 8 ⊢ ((6 · 5) + 2) = ;32 |
23 | 5t5e25 12861 | . . . . . . . 8 ⊢ (5 · 5) = ;25 | |
24 | 1, 2, 1, 18, 1, 9, 22, 23 | decmul1c 12823 | . . . . . . 7 ⊢ (;65 · 5) = ;;325 |
25 | 5p2e7 12449 | . . . . . . 7 ⊢ (5 + 2) = 7 | |
26 | 10, 1, 9, 24, 25 | decaddi 12818 | . . . . . 6 ⊢ ((;65 · 5) + 2) = ;;327 |
27 | 1, 3, 1, 17, 1, 9, 26, 23 | decmul1c 12823 | . . . . 5 ⊢ (;;655 · 5) = ;;;3275 |
28 | 12, 1, 16, 27 | decsuc 12789 | . . . 4 ⊢ ((;;655 · 5) + 1) = ;;;3276 |
29 | 5cn 12381 | . . . . 5 ⊢ 5 ∈ ℂ | |
30 | 3cn 12374 | . . . . 5 ⊢ 3 ∈ ℂ | |
31 | 5t3e15 12859 | . . . . 5 ⊢ (5 · 3) = ;15 | |
32 | 29, 30, 31 | mulcomli 11299 | . . . 4 ⊢ (3 · 5) = ;15 |
33 | 1, 4, 5, 14, 1, 15, 28, 32 | decmul1c 12823 | . . 3 ⊢ (;;;6553 · 5) = ;;;;32765 |
34 | 5p3e8 12450 | . . 3 ⊢ (5 + 3) = 8 | |
35 | 13, 1, 5, 33, 34 | decaddi 12818 | . 2 ⊢ ((;;;6553 · 5) + 3) = ;;;;32768 |
36 | 1, 6, 2, 7, 8, 5, 35, 19 | decmul1c 12823 | 1 ⊢ (;;;;65536 · 5) = ;;;;;327680 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 0cc0 11184 1c1 11185 · cmul 11189 2c2 12348 3c3 12349 5c5 12351 6c6 12352 7c7 12353 8c8 12354 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 |
This theorem is referenced by: fmtno5lem4 47430 |
Copyright terms: Public domain | W3C validator |