| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fmtno5 47562. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem2 | ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 12469 | . 2 ⊢ 5 ∈ ℕ0 | |
| 2 | 6nn0 12470 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 2, 1 | deccl 12671 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 4 | 3, 1 | deccl 12671 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 5 | 3nn0 12467 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12671 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2730 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 0nn0 12464 | . 2 ⊢ 0 ∈ ℕ0 | |
| 9 | 2nn0 12466 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 10 | 5, 9 | deccl 12671 | . . . . 5 ⊢ ;32 ∈ ℕ0 |
| 11 | 7nn0 12471 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 12 | 10, 11 | deccl 12671 | . . . 4 ⊢ ;;327 ∈ ℕ0 |
| 13 | 12, 2 | deccl 12671 | . . 3 ⊢ ;;;3276 ∈ ℕ0 |
| 14 | eqid 2730 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 15 | 1nn0 12465 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 16 | 5p1e6 12335 | . . . . 5 ⊢ (5 + 1) = 6 | |
| 17 | eqid 2730 | . . . . . 6 ⊢ ;;655 = ;;655 | |
| 18 | eqid 2730 | . . . . . . . 8 ⊢ ;65 = ;65 | |
| 19 | 6t5e30 12763 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
| 20 | 2cn 12268 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 21 | 20 | addlidi 11369 | . . . . . . . . 9 ⊢ (0 + 2) = 2 |
| 22 | 5, 8, 9, 19, 21 | decaddi 12716 | . . . . . . . 8 ⊢ ((6 · 5) + 2) = ;32 |
| 23 | 5t5e25 12759 | . . . . . . . 8 ⊢ (5 · 5) = ;25 | |
| 24 | 1, 2, 1, 18, 1, 9, 22, 23 | decmul1c 12721 | . . . . . . 7 ⊢ (;65 · 5) = ;;325 |
| 25 | 5p2e7 12344 | . . . . . . 7 ⊢ (5 + 2) = 7 | |
| 26 | 10, 1, 9, 24, 25 | decaddi 12716 | . . . . . 6 ⊢ ((;65 · 5) + 2) = ;;327 |
| 27 | 1, 3, 1, 17, 1, 9, 26, 23 | decmul1c 12721 | . . . . 5 ⊢ (;;655 · 5) = ;;;3275 |
| 28 | 12, 1, 16, 27 | decsuc 12687 | . . . 4 ⊢ ((;;655 · 5) + 1) = ;;;3276 |
| 29 | 5cn 12281 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 30 | 3cn 12274 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 31 | 5t3e15 12757 | . . . . 5 ⊢ (5 · 3) = ;15 | |
| 32 | 29, 30, 31 | mulcomli 11190 | . . . 4 ⊢ (3 · 5) = ;15 |
| 33 | 1, 4, 5, 14, 1, 15, 28, 32 | decmul1c 12721 | . . 3 ⊢ (;;;6553 · 5) = ;;;;32765 |
| 34 | 5p3e8 12345 | . . 3 ⊢ (5 + 3) = 8 | |
| 35 | 13, 1, 5, 33, 34 | decaddi 12716 | . 2 ⊢ ((;;;6553 · 5) + 3) = ;;;;32768 |
| 36 | 1, 6, 2, 7, 8, 5, 35, 19 | decmul1c 12721 | 1 ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 0cc0 11075 1c1 11076 · cmul 11080 2c2 12248 3c3 12249 5c5 12251 6c6 12252 7c7 12253 8c8 12254 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: fmtno5lem4 47561 |
| Copyright terms: Public domain | W3C validator |