| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fmtno5 47594. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem2 | ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 12401 | . 2 ⊢ 5 ∈ ℕ0 | |
| 2 | 6nn0 12402 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 2, 1 | deccl 12603 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 4 | 3, 1 | deccl 12603 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 5 | 3nn0 12399 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12603 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2731 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 0nn0 12396 | . 2 ⊢ 0 ∈ ℕ0 | |
| 9 | 2nn0 12398 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 10 | 5, 9 | deccl 12603 | . . . . 5 ⊢ ;32 ∈ ℕ0 |
| 11 | 7nn0 12403 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 12 | 10, 11 | deccl 12603 | . . . 4 ⊢ ;;327 ∈ ℕ0 |
| 13 | 12, 2 | deccl 12603 | . . 3 ⊢ ;;;3276 ∈ ℕ0 |
| 14 | eqid 2731 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 15 | 1nn0 12397 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 16 | 5p1e6 12267 | . . . . 5 ⊢ (5 + 1) = 6 | |
| 17 | eqid 2731 | . . . . . 6 ⊢ ;;655 = ;;655 | |
| 18 | eqid 2731 | . . . . . . . 8 ⊢ ;65 = ;65 | |
| 19 | 6t5e30 12695 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
| 20 | 2cn 12200 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 21 | 20 | addlidi 11301 | . . . . . . . . 9 ⊢ (0 + 2) = 2 |
| 22 | 5, 8, 9, 19, 21 | decaddi 12648 | . . . . . . . 8 ⊢ ((6 · 5) + 2) = ;32 |
| 23 | 5t5e25 12691 | . . . . . . . 8 ⊢ (5 · 5) = ;25 | |
| 24 | 1, 2, 1, 18, 1, 9, 22, 23 | decmul1c 12653 | . . . . . . 7 ⊢ (;65 · 5) = ;;325 |
| 25 | 5p2e7 12276 | . . . . . . 7 ⊢ (5 + 2) = 7 | |
| 26 | 10, 1, 9, 24, 25 | decaddi 12648 | . . . . . 6 ⊢ ((;65 · 5) + 2) = ;;327 |
| 27 | 1, 3, 1, 17, 1, 9, 26, 23 | decmul1c 12653 | . . . . 5 ⊢ (;;655 · 5) = ;;;3275 |
| 28 | 12, 1, 16, 27 | decsuc 12619 | . . . 4 ⊢ ((;;655 · 5) + 1) = ;;;3276 |
| 29 | 5cn 12213 | . . . . 5 ⊢ 5 ∈ ℂ | |
| 30 | 3cn 12206 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 31 | 5t3e15 12689 | . . . . 5 ⊢ (5 · 3) = ;15 | |
| 32 | 29, 30, 31 | mulcomli 11121 | . . . 4 ⊢ (3 · 5) = ;15 |
| 33 | 1, 4, 5, 14, 1, 15, 28, 32 | decmul1c 12653 | . . 3 ⊢ (;;;6553 · 5) = ;;;;32765 |
| 34 | 5p3e8 12277 | . . 3 ⊢ (5 + 3) = 8 | |
| 35 | 13, 1, 5, 33, 34 | decaddi 12648 | . 2 ⊢ ((;;;6553 · 5) + 3) = ;;;;32768 |
| 36 | 1, 6, 2, 7, 8, 5, 35, 19 | decmul1c 12653 | 1 ⊢ (;;;;65536 · 5) = ;;;;;327680 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 0cc0 11006 1c1 11007 · cmul 11011 2c2 12180 3c3 12181 5c5 12183 6c6 12184 7c7 12185 8c8 12186 ;cdc 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 |
| This theorem is referenced by: fmtno5lem4 47593 |
| Copyright terms: Public domain | W3C validator |