Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flsqrt5 Structured version   Visualization version   GIF version

Theorem flsqrt5 42291
Description: The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.)
Assertion
Ref Expression
flsqrt5 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((25 ≤ 𝑋𝑋 < 36) ↔ (⌊‘(√‘𝑋)) = 5))

Proof of Theorem flsqrt5
StepHypRef Expression
1 5nn0 11602 . . 3 5 ∈ ℕ0
2 flsqrt 42290 . . 3 (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 5 ∈ ℕ0) → ((⌊‘(√‘𝑋)) = 5 ↔ ((5↑2) ≤ 𝑋𝑋 < ((5 + 1)↑2))))
31, 2mpan2 683 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((⌊‘(√‘𝑋)) = 5 ↔ ((5↑2) ≤ 𝑋𝑋 < ((5 + 1)↑2))))
4 5cn 11403 . . . . . . 7 5 ∈ ℂ
54sqvali 13197 . . . . . 6 (5↑2) = (5 · 5)
6 5t5e25 11888 . . . . . 6 (5 · 5) = 25
75, 6eqtri 2821 . . . . 5 (5↑2) = 25
87breq1i 4850 . . . 4 ((5↑2) ≤ 𝑋25 ≤ 𝑋)
98a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((5↑2) ≤ 𝑋25 ≤ 𝑋))
10 5p1e6 11467 . . . . . . 7 (5 + 1) = 6
1110oveq1i 6888 . . . . . 6 ((5 + 1)↑2) = (6↑2)
12 6cn 11407 . . . . . . . 8 6 ∈ ℂ
1312sqvali 13197 . . . . . . 7 (6↑2) = (6 · 6)
14 6t6e36 11893 . . . . . . 7 (6 · 6) = 36
1513, 14eqtri 2821 . . . . . 6 (6↑2) = 36
1611, 15eqtri 2821 . . . . 5 ((5 + 1)↑2) = 36
1716breq2i 4851 . . . 4 (𝑋 < ((5 + 1)↑2) ↔ 𝑋 < 36)
1817a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → (𝑋 < ((5 + 1)↑2) ↔ 𝑋 < 36))
199, 18anbi12d 625 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → (((5↑2) ≤ 𝑋𝑋 < ((5 + 1)↑2)) ↔ (25 ≤ 𝑋𝑋 < 36)))
203, 19bitr2d 272 1 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((25 ≤ 𝑋𝑋 < 36) ↔ (⌊‘(√‘𝑋)) = 5))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157   class class class wbr 4843  cfv 6101  (class class class)co 6878  cr 10223  0cc0 10224  1c1 10225   + caddc 10227   · cmul 10229   < clt 10363  cle 10364  2c2 11368  3c3 11369  5c5 11371  6c6 11372  0cn0 11580  cdc 11783  cfl 12846  cexp 13114  csqrt 14314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-rp 12075  df-fl 12848  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316
This theorem is referenced by:  31prm  42294
  Copyright terms: Public domain W3C validator