Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flsqrt5 Structured version   Visualization version   GIF version

Theorem flsqrt5 45046
Description: The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.)
Assertion
Ref Expression
flsqrt5 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((25 ≤ 𝑋𝑋 < 36) ↔ (⌊‘(√‘𝑋)) = 5))

Proof of Theorem flsqrt5
StepHypRef Expression
1 5nn0 12253 . . 3 5 ∈ ℕ0
2 flsqrt 45045 . . 3 (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 5 ∈ ℕ0) → ((⌊‘(√‘𝑋)) = 5 ↔ ((5↑2) ≤ 𝑋𝑋 < ((5 + 1)↑2))))
31, 2mpan2 688 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((⌊‘(√‘𝑋)) = 5 ↔ ((5↑2) ≤ 𝑋𝑋 < ((5 + 1)↑2))))
4 5cn 12061 . . . . . . 7 5 ∈ ℂ
54sqvali 13897 . . . . . 6 (5↑2) = (5 · 5)
6 5t5e25 12540 . . . . . 6 (5 · 5) = 25
75, 6eqtri 2766 . . . . 5 (5↑2) = 25
87breq1i 5081 . . . 4 ((5↑2) ≤ 𝑋25 ≤ 𝑋)
98a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((5↑2) ≤ 𝑋25 ≤ 𝑋))
10 5p1e6 12120 . . . . . . 7 (5 + 1) = 6
1110oveq1i 7285 . . . . . 6 ((5 + 1)↑2) = (6↑2)
12 6cn 12064 . . . . . . . 8 6 ∈ ℂ
1312sqvali 13897 . . . . . . 7 (6↑2) = (6 · 6)
14 6t6e36 12545 . . . . . . 7 (6 · 6) = 36
1513, 14eqtri 2766 . . . . . 6 (6↑2) = 36
1611, 15eqtri 2766 . . . . 5 ((5 + 1)↑2) = 36
1716breq2i 5082 . . . 4 (𝑋 < ((5 + 1)↑2) ↔ 𝑋 < 36)
1817a1i 11 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → (𝑋 < ((5 + 1)↑2) ↔ 𝑋 < 36))
199, 18anbi12d 631 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → (((5↑2) ≤ 𝑋𝑋 < ((5 + 1)↑2)) ↔ (25 ≤ 𝑋𝑋 < 36)))
203, 19bitr2d 279 1 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((25 ≤ 𝑋𝑋 < 36) ↔ (⌊‘(√‘𝑋)) = 5))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  2c2 12028  3c3 12029  5c5 12031  6c6 12032  0cn0 12233  cdc 12437  cfl 13510  cexp 13782  csqrt 14944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946
This theorem is referenced by:  31prm  45049
  Copyright terms: Public domain W3C validator