| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version | ||
| Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4p1e5 | ⊢ (4 + 1) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12259 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 1 | eqcomi 2739 | 1 ⊢ (4 + 1) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 4c4 12250 5c5 12251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-5 12259 |
| This theorem is referenced by: 8t7e56 12776 9t6e54 12782 s5len 14873 bpoly4 16032 2exp16 17068 prmlem2 17097 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 2503lem1 17114 2503lem2 17115 2503lem3 17116 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 log2ublem3 26865 log2ub 26866 ex-exp 30386 ex-fac 30387 fib5 34403 fib6 34404 hgt750lemd 34646 hgt750lem2 34650 60gcd7e1 42000 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1p4 42066 aks4d1p1p7 42069 aks4d1p1 42071 5bc2eq10 42137 2ap1caineq 42140 sq45 42666 3cubeslem3l 42681 3cubeslem3r 42682 fmtno1 47546 257prm 47566 fmtno4prmfac 47577 fmtno4nprmfac193 47579 fmtno5faclem2 47585 31prm 47602 127prm 47604 m11nprm 47606 2exp340mod341 47738 nnsum3primesle9 47799 5m4e1 49790 |
| Copyright terms: Public domain | W3C validator |