| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version | ||
| Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4p1e5 | ⊢ (4 + 1) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12191 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 1 | eqcomi 2740 | 1 ⊢ (4 + 1) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 4c4 12182 5c5 12183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-5 12191 |
| This theorem is referenced by: 8t7e56 12708 9t6e54 12714 s5len 14807 bpoly4 15966 2exp16 17002 prmlem2 17031 163prm 17036 317prm 17037 631prm 17038 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001lem4 17055 log2ublem3 26885 log2ub 26886 ex-exp 30430 ex-fac 30431 fib5 34418 fib6 34419 hgt750lemd 34661 hgt750lem2 34665 60gcd7e1 42108 3lexlogpow5ineq1 42157 3lexlogpow5ineq5 42163 aks4d1p1p4 42174 aks4d1p1p7 42177 aks4d1p1 42179 5bc2eq10 42245 2ap1caineq 42248 sq45 42774 3cubeslem3l 42789 3cubeslem3r 42790 fmtno1 47651 257prm 47671 fmtno4prmfac 47682 fmtno4nprmfac193 47684 fmtno5faclem2 47690 31prm 47707 127prm 47709 m11nprm 47711 2exp340mod341 47843 nnsum3primesle9 47904 5m4e1 49908 |
| Copyright terms: Public domain | W3C validator |