Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version |
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
4p1e5 | ⊢ (4 + 1) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11745 | . 2 ⊢ 5 = (4 + 1) | |
2 | 1 | eqcomi 2767 | 1 ⊢ (4 + 1) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 (class class class)co 7155 1c1 10581 + caddc 10583 4c4 11736 5c5 11737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-5 11745 |
This theorem is referenced by: 8t7e56 12262 9t6e54 12268 s5len 14314 bpoly4 15466 2exp16 16487 prmlem2 16516 163prm 16521 317prm 16522 631prm 16523 1259lem1 16527 1259lem2 16528 1259lem3 16529 1259lem4 16530 2503lem1 16533 2503lem2 16534 2503lem3 16535 4001lem1 16537 4001lem2 16538 4001lem3 16539 4001lem4 16540 log2ublem3 25638 log2ub 25639 ex-exp 28339 ex-fac 28340 fib5 31895 fib6 31896 hgt750lemd 32151 hgt750lem2 32155 60gcd7e1 39598 3lexlogpow5ineq1 39647 3lexlogpow5ineq5 39653 aks4d1p1p4 39663 aks4d1p1p7 39666 aks4d1p1 39668 5bc2eq10 39669 2ap1caineq 39672 3cubeslem3l 40028 3cubeslem3r 40029 fmtno1 44454 257prm 44474 fmtno4prmfac 44485 fmtno4nprmfac193 44487 fmtno5faclem2 44493 31prm 44510 127prm 44512 m11nprm 44514 2exp340mod341 44646 nnsum3primesle9 44707 5m4e1 45789 |
Copyright terms: Public domain | W3C validator |