| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version | ||
| Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4p1e5 | ⊢ (4 + 1) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12311 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 1 | eqcomi 2745 | 1 ⊢ (4 + 1) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 1c1 11135 + caddc 11137 4c4 12302 5c5 12303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-5 12311 |
| This theorem is referenced by: 8t7e56 12833 9t6e54 12839 s5len 14924 bpoly4 16080 2exp16 17115 prmlem2 17144 163prm 17149 317prm 17150 631prm 17151 1259lem1 17155 1259lem2 17156 1259lem3 17157 1259lem4 17158 2503lem1 17161 2503lem2 17162 2503lem3 17163 4001lem1 17165 4001lem2 17166 4001lem3 17167 4001lem4 17168 log2ublem3 26915 log2ub 26916 ex-exp 30436 ex-fac 30437 fib5 34442 fib6 34443 hgt750lemd 34685 hgt750lem2 34689 60gcd7e1 42023 3lexlogpow5ineq1 42072 3lexlogpow5ineq5 42078 aks4d1p1p4 42089 aks4d1p1p7 42092 aks4d1p1 42094 5bc2eq10 42160 2ap1caineq 42163 sq45 42661 3cubeslem3l 42676 3cubeslem3r 42677 fmtno1 47522 257prm 47542 fmtno4prmfac 47553 fmtno4nprmfac193 47555 fmtno5faclem2 47561 31prm 47578 127prm 47580 m11nprm 47582 2exp340mod341 47714 nnsum3primesle9 47775 5m4e1 49628 |
| Copyright terms: Public domain | W3C validator |