| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version | ||
| Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4p1e5 | ⊢ (4 + 1) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12194 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (4 + 1) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 4c4 12185 5c5 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-5 12194 |
| This theorem is referenced by: 8t7e56 12711 9t6e54 12717 s5len 14807 bpoly4 15966 2exp16 17002 prmlem2 17031 163prm 17036 317prm 17037 631prm 17038 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001lem4 17055 log2ublem3 26856 log2ub 26857 ex-exp 30394 ex-fac 30395 fib5 34373 fib6 34374 hgt750lemd 34616 hgt750lem2 34620 60gcd7e1 41982 3lexlogpow5ineq1 42031 3lexlogpow5ineq5 42037 aks4d1p1p4 42048 aks4d1p1p7 42051 aks4d1p1 42053 5bc2eq10 42119 2ap1caineq 42122 sq45 42648 3cubeslem3l 42663 3cubeslem3r 42664 fmtno1 47529 257prm 47549 fmtno4prmfac 47560 fmtno4nprmfac193 47562 fmtno5faclem2 47568 31prm 47585 127prm 47587 m11nprm 47589 2exp340mod341 47721 nnsum3primesle9 47782 5m4e1 49786 |
| Copyright terms: Public domain | W3C validator |