| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version | ||
| Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4p1e5 | ⊢ (4 + 1) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12228 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (4 + 1) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 4c4 12219 5c5 12220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-5 12228 |
| This theorem is referenced by: 8t7e56 12745 9t6e54 12751 s5len 14842 bpoly4 16001 2exp16 17037 prmlem2 17066 163prm 17071 317prm 17072 631prm 17073 1259lem1 17077 1259lem2 17078 1259lem3 17079 1259lem4 17080 2503lem1 17083 2503lem2 17084 2503lem3 17085 4001lem1 17087 4001lem2 17088 4001lem3 17089 4001lem4 17090 log2ublem3 26834 log2ub 26835 ex-exp 30352 ex-fac 30353 fib5 34369 fib6 34370 hgt750lemd 34612 hgt750lem2 34616 60gcd7e1 41966 3lexlogpow5ineq1 42015 3lexlogpow5ineq5 42021 aks4d1p1p4 42032 aks4d1p1p7 42035 aks4d1p1 42037 5bc2eq10 42103 2ap1caineq 42106 sq45 42632 3cubeslem3l 42647 3cubeslem3r 42648 fmtno1 47515 257prm 47535 fmtno4prmfac 47546 fmtno4nprmfac193 47548 fmtno5faclem2 47554 31prm 47571 127prm 47573 m11nprm 47575 2exp340mod341 47707 nnsum3primesle9 47768 5m4e1 49759 |
| Copyright terms: Public domain | W3C validator |