Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version |
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
4p1e5 | ⊢ (4 + 1) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11944 | . 2 ⊢ 5 = (4 + 1) | |
2 | 1 | eqcomi 2748 | 1 ⊢ (4 + 1) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7252 1c1 10778 + caddc 10780 4c4 11935 5c5 11936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2731 df-5 11944 |
This theorem is referenced by: 8t7e56 12461 9t6e54 12467 s5len 14516 bpoly4 15672 2exp16 16695 prmlem2 16724 163prm 16729 317prm 16730 631prm 16731 1259lem1 16735 1259lem2 16736 1259lem3 16737 1259lem4 16738 2503lem1 16741 2503lem2 16742 2503lem3 16743 4001lem1 16745 4001lem2 16746 4001lem3 16747 4001lem4 16748 log2ublem3 25978 log2ub 25979 ex-exp 28690 ex-fac 28691 fib5 32247 fib6 32248 hgt750lemd 32503 hgt750lem2 32507 60gcd7e1 39920 3lexlogpow5ineq1 39969 3lexlogpow5ineq5 39975 aks4d1p1p4 39985 aks4d1p1p7 39988 aks4d1p1 39990 5bc2eq10 39998 2ap1caineq 40001 3cubeslem3l 40396 3cubeslem3r 40397 fmtno1 44854 257prm 44874 fmtno4prmfac 44885 fmtno4nprmfac193 44887 fmtno5faclem2 44893 31prm 44910 127prm 44912 m11nprm 44914 2exp340mod341 45046 nnsum3primesle9 45107 5m4e1 46360 |
Copyright terms: Public domain | W3C validator |