![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version |
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
4p1e5 | ⊢ (4 + 1) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12359 | . 2 ⊢ 5 = (4 + 1) | |
2 | 1 | eqcomi 2749 | 1 ⊢ (4 + 1) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 4c4 12350 5c5 12351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-5 12359 |
This theorem is referenced by: 8t7e56 12878 9t6e54 12884 s5len 14949 bpoly4 16107 2exp16 17138 prmlem2 17167 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 2503lem1 17184 2503lem2 17185 2503lem3 17186 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 log2ublem3 27009 log2ub 27010 ex-exp 30482 ex-fac 30483 fib5 34370 fib6 34371 hgt750lemd 34625 hgt750lem2 34629 60gcd7e1 41962 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 aks4d1p1p4 42028 aks4d1p1p7 42031 aks4d1p1 42033 5bc2eq10 42099 2ap1caineq 42102 sq45 42626 3cubeslem3l 42642 3cubeslem3r 42643 fmtno1 47415 257prm 47435 fmtno4prmfac 47446 fmtno4nprmfac193 47448 fmtno5faclem2 47454 31prm 47471 127prm 47473 m11nprm 47475 2exp340mod341 47607 nnsum3primesle9 47668 5m4e1 48891 |
Copyright terms: Public domain | W3C validator |