![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version |
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
4p1e5 | ⊢ (4 + 1) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12276 | . 2 ⊢ 5 = (4 + 1) | |
2 | 1 | eqcomi 2733 | 1 ⊢ (4 + 1) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7402 1c1 11108 + caddc 11110 4c4 12267 5c5 12268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2716 df-5 12276 |
This theorem is referenced by: 8t7e56 12795 9t6e54 12801 s5len 14849 bpoly4 16001 2exp16 17025 prmlem2 17054 163prm 17059 317prm 17060 631prm 17061 1259lem1 17065 1259lem2 17066 1259lem3 17067 1259lem4 17068 2503lem1 17071 2503lem2 17072 2503lem3 17073 4001lem1 17075 4001lem2 17076 4001lem3 17077 4001lem4 17078 log2ublem3 26799 log2ub 26800 ex-exp 30175 ex-fac 30176 fib5 33896 fib6 33897 hgt750lemd 34151 hgt750lem2 34155 60gcd7e1 41367 3lexlogpow5ineq1 41416 3lexlogpow5ineq5 41422 aks4d1p1p4 41433 aks4d1p1p7 41436 aks4d1p1 41438 5bc2eq10 41455 2ap1caineq 41458 sq45 41927 3cubeslem3l 41938 3cubeslem3r 41939 fmtno1 46719 257prm 46739 fmtno4prmfac 46750 fmtno4nprmfac193 46752 fmtno5faclem2 46758 31prm 46775 127prm 46777 m11nprm 46779 2exp340mod341 46911 nnsum3primesle9 46972 5m4e1 48056 |
Copyright terms: Public domain | W3C validator |