| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version | ||
| Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4p1e5 | ⊢ (4 + 1) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12252 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (4 + 1) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 4c4 12243 5c5 12244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-5 12252 |
| This theorem is referenced by: 8t7e56 12769 9t6e54 12775 s5len 14866 bpoly4 16025 2exp16 17061 prmlem2 17090 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 2503lem1 17107 2503lem2 17108 2503lem3 17109 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 log2ublem3 26858 log2ub 26859 ex-exp 30379 ex-fac 30380 fib5 34396 fib6 34397 hgt750lemd 34639 hgt750lem2 34643 60gcd7e1 41993 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1p4 42059 aks4d1p1p7 42062 aks4d1p1 42064 5bc2eq10 42130 2ap1caineq 42133 sq45 42659 3cubeslem3l 42674 3cubeslem3r 42675 fmtno1 47542 257prm 47562 fmtno4prmfac 47573 fmtno4nprmfac193 47575 fmtno5faclem2 47581 31prm 47598 127prm 47600 m11nprm 47602 2exp340mod341 47734 nnsum3primesle9 47795 5m4e1 49786 |
| Copyright terms: Public domain | W3C validator |