![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version GIF version |
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
4p1e5 | ⊢ (4 + 1) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12330 | . 2 ⊢ 5 = (4 + 1) | |
2 | 1 | eqcomi 2744 | 1 ⊢ (4 + 1) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 1c1 11154 + caddc 11156 4c4 12321 5c5 12322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-5 12330 |
This theorem is referenced by: 8t7e56 12851 9t6e54 12857 s5len 14936 bpoly4 16092 2exp16 17125 prmlem2 17154 163prm 17159 317prm 17160 631prm 17161 1259lem1 17165 1259lem2 17166 1259lem3 17167 1259lem4 17168 2503lem1 17171 2503lem2 17172 2503lem3 17173 4001lem1 17175 4001lem2 17176 4001lem3 17177 4001lem4 17178 log2ublem3 27006 log2ub 27007 ex-exp 30479 ex-fac 30480 fib5 34387 fib6 34388 hgt750lemd 34642 hgt750lem2 34646 60gcd7e1 41987 3lexlogpow5ineq1 42036 3lexlogpow5ineq5 42042 aks4d1p1p4 42053 aks4d1p1p7 42056 aks4d1p1 42058 5bc2eq10 42124 2ap1caineq 42127 sq45 42658 3cubeslem3l 42674 3cubeslem3r 42675 fmtno1 47466 257prm 47486 fmtno4prmfac 47497 fmtno4nprmfac193 47499 fmtno5faclem2 47505 31prm 47522 127prm 47524 m11nprm 47526 2exp340mod341 47658 nnsum3primesle9 47719 5m4e1 49028 |
Copyright terms: Public domain | W3C validator |